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Abstract

This thesis investigates the use of separation logic for reasoning about dynamically recon-
figurable behavior, interaction, priority (DR-BIP) systems and allows the verification of
reconfiguration programs on certain distributed systems. Separation logic extends Hoare
logic to enable the verification of programs on resources. It makes use of local reasoning,
which is primarily enabled by a frame rule. Static BIP systems represent component-based
systems, where a fixed number of components encapsulate behavior specified as transition
systems and interact via a fixed set of multi-party interactions (synchronizations) that are
executed atomically and non-deterministically. The extension to DR-BIP systems addition-
ally allows dynamic reconfiguration through addition and/or removal of interactions and
components during runtime.

This work defines BIP configurations that represent a current state in a BIP system and
then gives a separation logic that is evaluated on the BIP configurations. Furthermore, a
reconfiguration language is specified that allows the definition of reconfiguration programs
on those BIP configurations. We give axioms and inference rules that enable us to check
the partial correctness of reconfiguration programs in a Hoare calculus-style. Because these
programs are not usually local, the main challenge is the definition of a frame rule. For that
purpose, we generalize the notion of locality and reason about the possible state changes in
a system.

As an application example of the theory, we give reconfiguration rules on parametric
token rings and prove their correctness.
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1. Introduction

Software surrounds us in almost all aspects of our lives and its importance increases every
day. At the same time, the costs of software errors are also increasing [ZC09]. Meanwhile,
software projects become more and more complex, which makes it harder to oversee them.
To find errors, big software companies, like facebook, have recently successfully applied
automated proof tools to verify code using separation logic [O’H19].

Separation Logic The idea is to specify pre- and postconditions P and Q and prove that
the execution of a program C on a system that fulfills P leads to a system in state Q. This
can be expressed by a Hoare triple

{P}C{O}

This notation, together with a set of proof rules, was first proposed by C. A. R. Hoare in
[Hoa69] and is called Hoare logic. It enables the verification of programs without pointers,
where pre- and postconditions are formulae in first-order logic.

In order to prove the correctness of programs with pointers, John C. Reynolds proposed
separation logic [Rey02] as an extension of Hoare logic. He assumes that pointers map to
cells in a heap and introduces a spatial conjunction *, where P = Q states that the property
P holds on one part of the heap and Q on the other. Programs with pointers (which are
also called programs on heaps) only change certain cells of the heap and the rest remains
unaltered. This enables local reasoning, which was formalized by Peter O’Hearn, John C.
Reynolds and Hongseok Yang in [ORYO01] in the frame rule, which is an inference rule that
states

{P}C{Q)
{P+xF}C{QxF}.

Hence, if a program C is executed on a model of P and the resulting heap models Q, then
the execution of the same program C on a model of P x F (hence a greater heap, where a
part models P) results in a model of Q= F for a formula F. This states that we can enlarge
a heap that models P arbitrarily and the program C still changes the same specific cells.

Separation logic was adapted for the reasoning and verification of programs on other
resources. In [COY07], this was formalized as abstract separation logic and abstract infer-
ence rules were given for any programs and resources that allow local reasoning, where the
programs are local actions and the resources are separation algebras.

BIP This work aims to provide the tools to verify programs that alter a certain type of
distributed systems. As resources, we specify BIP configurations, which are inspired by
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Figure 1.1.: Token Ring as BIP Configuration

the architecture description language BIP (behavior, interaction, priority framework) that
can be used to describe component-based distributed systems [BBB*11]. A BIP configura-
tion represents components that are connected via interactions. Each component contains
a finite-state transition system and a set of ports (both of which are specified via the type
of the component). An interaction connects a finite number of ports of components, where
the ports are specified by the interaction type. Interactions may fire non-deterministically.
If they trigger, then all the connected components change their state via a transition in their
transition system.

A token ring is a typical example of a system that can be modeled via BIP. It contains a
finite number of components that are connected according to a ring topology. Each com-
ponent has two possible states; either it has a token (T) or it does not (). A token may be
passed from a component with a token to a component without a token and thereby both
components change their state accordingly. See Figure 1.1 for an illustration as a BIP con-
figuration.

An extension of BIP is DR-BIP [BBBS18], which adds reconfiguration programs that
additionally specify how and if a distributed system can be reconfigured. In the token ring
example, such a reconfiguration program might specify that a component in the ring is only
deleted if the resulting ring remains deadlock-free.

Contribution We propose a reconfiguration language on BIP that allows us to define
programs on BIP configurations. Furthermore, we define a separation logic on BIP (SL
on BIP) that enables us to specify properties of BIP configurations. We want to prove
the correctness of the reconfiguration programs on BIP configurations and specify a set of
inference rules for that purpose. Those rules are used to prove the correctness of a Hoare
triple { P} C { Q } for pre- and postconditions P and Q written as formulae in SL on BIP
and a program C that is given via the reconfiguration language on BIP.

For the token ring example, we may specify, both as pre- and postcondition, that the ring
consists of at least one component in state T and one component in state H. Furthermore, we
might define a program for the deletion of a component in the ring that deletes a component



only if there exists at least one other component in the same state.

The logic and the reconfiguration language are both inspired by abstract separation logic
[COYO07], but we cannot apply the theory directly, because the atomic reconfigurations of
the reconfiguration language on BIP are not local actions. By relaxing the notion of lo-
cality, we circumvent this problem. Furthermore, abstract separation logic is intended for
static resources, whereas we analyze concurrent BIP configurations with interactions that
trigger arbitrarily. We assume that composed programs are not atomic and that the states of
components may change in between the execution of two commands. Hence, the inference
rule for sequential composition of two programs differs from the associated abstract rule,
because the state changes need to be taken into account. For that purpose, we define an
additional set of rules that reasons only about the firing of interactions and the associated
state changes. Finally, we use two different sets of inference rules; the reconfiguration rules
resemble the inference rules of abstract separation logic and are used for reasoning about
static BIP configurations and the havoc rules for reasoning about the possible state changes.

The reconfiguration rules contain a frame rule that enables local reasoning and we want
to reuse this concept for the havoc rules. Suppose that a token ring is split into two non-
empty chains of components and one chain has no tokens and the other chain contains at
least one. There are no possible state changes in the first chain, but the tokens in the whole
ring could move an arbitrary number of times. Thus, we cannot reason about the state
changes of a whole system simply by looking at its parts separately. We solve this problem
by adding the incoming and outgoing interactions for the first chain and reason about the
chain together with those interactions. Then, we can assume that an arbitrary number of
tokens get into the chain and obtain a superset of the possible state changes. This is done on
both parts and finally, the possible state changes of both parts are interwoven. In general, we
define a frontier that contains the interactions of a part of the BIP configuration that connect
components of the current part. Then we reason about each part together with its frontier
and interweave the traces of state changes. Using this, we obtain a way to reason locally.

Organization This thesis starts by defining BIP configurations, which we use as models
for our logic, in Chapter 2. Chapter 3 specifies the separation logic on BIP and Chapter 4
defines the reconfiguration language on BIP. The reconfiguration rules on static BIP config-
urations and the havoc rules on concurrent BIP configurations are given in Chapter 5. Last
but not least we illustrate our verification method on the token ring example in Chapter 6.
We define reconfiguration programs on the token ring and prove their correctness using the
reconfiguration and havoc rules.






2. Separation Algebra of BIP
Configurations

Calcagno, O’Hearn and Yang [COYO07] defined separation algebras, which are cancellative,
partial commutative monoids. They showed that the elements in an arbitrary separation
algebra can be used as models for a generic separation logic. They defined the syntax
and semantics of such a logic and additionally defined a programming language that alters
the elements in a separation algebra using special relations, so-called local actions. This
notion was refined by Dockins, Hobor and Appel in [COYO07], where they defined multi-
unit separation algebras that allow multiple units.

In the first section of this chapter, we summarize the theory of separation algebras and
in the second section, we define BIP configurations and show that they form a separation
algebra for any fixed set of component and interaction types.

2.1. Theory of Abstract Separation Logic

This section summarizes the theory of (multi-unit) separation algebras given in [COY(07]
and [DHAOQ9]. The definitions are extractions of those two papers.

Definition 1 (Multi-unit Separation Algebra, [COYO07], [DHAO09]). A multi-unit separation
algebra is a cancellative, partial commutative monoid (X, e, E), where the elements in E C X
are units satisfying that

for each o € Z there exists exactly one og € E such that ce o = 0.

A partial commutative monoid is given by a partial binary operation where the unity, com-
mutativity and associativity laws hold for the equality, that means both sides are defined
and equal, or both are undefined. The cancellative property says that for each o € Z, the
partial function o e (-) : ¥ — X is injective. The induced separateness (#) and substate (<)
relations are given by

oofto  iff ogeo is defined,

oo=<o0y iff doj.op=0pe0].
We define our multi-unit separation algebra to be disjoint, thus
gpeoog=01 implies og=o0].

We want to define a programming language on elements in a separation algebra. For a



program P we assume pre- and postconditions and they can be expressed by subsets of the
separation algebra, which we call predicates.

Definition 2 (Predicate, [COYO07]). Let (Z,e,E) be a separation algebra. Predicates over X
are elements of the powerset P(Z). The set of predicates P(X) has an ordered total commu-
tative monoid structure (x,emp) given by

pxq={ogeoy|op#foci1 NopyeE pAo1€q)and emp = FE

for p,q € P(X) and emp is the predicate of units. The elements in the power set P(X) are
ordered using the subset relation.

The empty predicate contains only the unit elements of the separation algebra. For the
separation algebra on heaps, emp would contain only the empty heap. We want to add a
predicate that we use to denote errors later.

Definition 3 ([COYO07]). The set P(X)" is obtained by adding a new greatest element T
to P(X). It has a total commutative monoid structure, keeping the unit emp the same as in
P(T), and extending * so that px T = Txp =T for all p € P(X)"T. The subset relation is
extended such that p C T holds for every predicate p € P(Z).

A key property of separation logic is local reasoning. O’Hearn, Reynolds and Yang sum-
marized this in the following way in [ORYO01] for separation logic on heaps:

“To understand how a program works, it should be possible for reasoning and
specification to be confined to cells that the program actually accesses. The
value of any other cell will automatically remain unchanged.”

Assume a program that alters a heap by writing the number 5 into the first cell (and
assume that the cells are numbered). If we execute this program on any heap, then only the
first cell is changed and the rest of the cells stay the same. If the rest of the heap satisfies a
certain property before the execution, then it still satisfies this property afterwards.

Programs that behave like this are called local, since they alter only certain parts (in the
case of heaps they alter only certain cells). A counterexample would be a program that sets
the content of every cell in the given heap to zero. This program does not act local, but
rather global.

Definition 4 (Local Action, [COYO07]). Suppose (X,e,E) is a separation algebra. A local
action f: £ — P(X)T is a function satisfying the locality condition:

oottor  implies  f(ogeo1) C(f(0o))*{o1},

where 0,01 € Z. We call LocAct(Z, e, E) the set of local actions over the separation algebra
(Z, e, E) and note that it can be ordered pointwise.

2.2. BIP Configurations

The BIP framework [BBB*11] is used to design component-based systems and models
systems built of components, and interactions that connect those components. Components



and interactions are always instances of some component respectively interaction type.

Components have an internal behavior, which is described by a finite-state transition
system. The type of each component determines its behavior. Furthermore, the component
type specifies a number of ports. Those ports are connected to ports of other components
by interactions. Each interaction may connect only designated ports, and their types and the
number of ports is determined by the interaction type.

Throughout this section, we define BIP systems and BIP configurations that represent
simplified versions of settings in BIP frameworks. The BIP configurations represent states
of BIP systems and will be used as models of the separation logic on BIP in further chapters.

The dining philosophers problem, given by Dijkstra, is used throughout this section to
illustrate the theory and make its application more clear.

Example 1. The dining philosophers problem is about five philosophers sitting at a round
table where each one has her own plate and there lie five forks between the plates. The
philosophers are alternately thinking (about philosophical problems) and eating. Further-
more [Dij71] states:

“Their only problem - besides those of philosophy - is that the dish served is a
very difficult kind of spaghetti, that has to be eaten with two forks. There are
two forks next to each plate, so that presents no difficulty: as a consequence,
however, no two neighbors may be eating simultaneously.”

Dijkstra gave this example to reason about the sequential composition of processes and
possibly occurring deadlocks. Assume that a philosopher picks up the right fork first and
the left fork afterwards, if she is hungry. After eating, she puts both forks down and resumes
thinking. This leads to problems if all the philosophers get hungry at exactly the same time
because then each one holds their right fork but lacks the left one. They wait until they can
pick up the left one, which will never happen since the philosopher to their left is holding
this fork and is also waiting.

We represent the problem via BIP configurations, describe settings via formulae in sepa-
ration logic, and reconfigure BIP configurations via a programming language.

Remark 1. Throughout this thesis, we assume that U is a fixed, countably infinite set. We
use it to differentiate between different components by mapping them to elements in the
universe U. Furthermore, the set of variables V is another fixed, infinite set.

We start by defining a signature that determines the names of the component and interac-
tion types.

Definition 5 (Signature). We define a finite set of component symbols C ={Cy,...,C,} and
a finite set of interaction symbols I = {Iy,...,1,,}, where each interaction symbol I; € I has
an arity greater or equal 2, which is denoted by a mapping « : {1,...,m} — Ny. A signature
is

<C91> = < C],...,Cn,ll,...,lm >

Example 2 (Dining Philosophers). For the dining philosophers problem, we define the com-
ponent symbols pHILO and Fork and the interaction symbols TAKE_RIGHT, TAKE_LEFT, and



PHILO PHILO

FORK TAKE_LEFT
TAKE_RIGHT
FORK FORK
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Figure 2.1.: Setting in the dining philosophers problem visualized by an undirected hyper-
graph.

PUT_DOWN. The arity of TAKE_RIGHT and TAKE_LEFT is 2, whereas the arity of PUT_DOWN is
3 (compare also with Figure 2.1). Hence the signature is

(C,I) = (PHILO, FORK, TAKE_RIGHT, TAKE_LEFT, PUT_DOWN).

For each component symbol C; € C, we define a component type that specifies the behav-
ior of each instance of the type; it determines a set of ports, a set of states, and a deterministic
finite-state transition system. This transition system changes its state when a connector (thus
an interaction that is connected at some port) fires.

Definition 6 (Component Types). The component type C; € C is defined by the deterministic
finite-state transition system
(Si, Py, 80, ~0),

where P; C {Iff [1j€l, 1 <t <a())}is a finite set of ports, S; is a finite set of states, s? €S;
is the initial state, and ~»;: S; XP; — S; is a partial transition function. For two component
types C;,C; € C, i # j, the sets of ports P; and P; and the sets of states S; and S ; are disjoint.

We say that a component type sets the behavior of the component. Note that the ports
of a component type are also the labels of the transition system. Furthermore, they are
interaction symbols with an additional number. We illustrate the previous definition by
specifying component types for the dining philosophers problem.

Each philosopher can be thinking, hungry or eating. She changes her state if she picks up
forks or lies them down; she thinks if she does not have a fork, she is hungry if she has one
fork and she is eating if she has both forks. A fork is either busy, if a philosopher to its right
or left uses it, or free.
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Figure 2.2.: The state diagram describes the behavior of instances of the component type
PHILO.

Example 3 (Dining Philosophers). First, we define the component type pHILO and set

Seuo = {THINKING, HUNGRY, EATING},

Pruno = {TAKE_RIGHTI,TAKE_LEFTI,PUT_DOWNI} and

0 —
Spro = THINKING.

The transitions in the finite-state transition system are

TAKE7RIGHT] TAKE, LEFT]

THINKING ~pyo HUNGRY, HUNGRY ~pyno EATING,

PUT. DOWNI

and EATING ~3pypo THINKING.

The transition rules reflect the behavior of the philosophers and are depicted in Figure 2.2.
Then the component type is PHILO = (Spir0s Priiios Suo» ~piiiio)-

The component type FORK is specified as FORK = (Sgork s Prork» S ~pork) With

0
FORK?
Srork = {FREE, BUSY},

Prork = {TAKE_LEFT2 s TAKE_RIGHT2 s PUT_DOWN2 s PUT_DOWN3 1,

0  _
Spork = FREE

and the transition rules are

TAKE_LEF]'2 TAKE_RIGHT2

FREE ~pork BUSY, FREE ~Spopk  BUSY,

PUT_DOWN2 PUT_DOWN3

BUSY ~3pork FREE and BUSY ~3pork FREE.

The associated state diagram can be found in Figure 2.3.
The sets of states Spyyo and Spork and the sets of ports Ppyy o and Progi are disjoint. The
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Figure 2.3.: The state diagram describes the behavior of instances of the component type
FORK.

set of all ports is

Peuio U Prork = {TAKE_LEFTI s TAKE_LEFTZ,TAKE_RIGHTl ,TAKE_RIGHTZ,

PUT_DOWN', PUT_DOWNZ, PUT_DOWN® 1.

Interaction symbols are already interaction types and determine implicitly which compo-
nents interactions of this type can connect. Let /; € I be an interaction type. Then instances
LY.

of this type connect a(j) components via the ports / jl., ool

Example 4 (Dining Philosophers). The interaction types and their arity were already spec-
ified in Example 2 and the ports follow implicitly via the definition of the ports from the
component types: There are two ports TAKE_LEFT' and TAKE_LEFT?> with name TAKE_LEFT. The
same holds for the interaction type TaKE_RIGHT. Only for the type puT_bownN there exist three

pOI'tS PUT_DOWNl ,PUT_DOWNZ, and PUT_DOWNS.

The definitions of the component types specify which ports belong to which component
type. Here we can derive that TAKE_LEFT and TAKE_RIGHT connect a philosopher with a fork
and puT_powN connects a philosopher with two forks.

A BIP system is a collection of instances of the different component and interaction types,
where each instance of a type is specified via an element in the universe Y. The set of
instances for each type is given as a relation.

Definition 7 (BIP System). Let (C,I) be a signature, then
C:=(C3,...,Co,IT, ... I )
is a BIP system over (C, I), where Clls CU, 1 <i<n, arerelations over the universe U with

arity 1, and If CUD, 1 < j<m, are relations over the universe U with arity a(}).

Example 5 (Dining Philosophers). Dijkstra specified the problem for five philosophers and
five forks and even though this fixes the number of components to ten, we could represent
this problem by various BIP systems over the signature (C,I): Let u,un,...,us € U be five

10



arbitrary, but pairwise distinct elements in the universe. Then

S =/ PHILO® = {ui,...,us}, FORK® = {ui,...,us},

TAKE_LEFT® = {(u1,u1), ..., (us, us)},

TAKE_RIGHT = {(u1,us), (u2, 1), .., (us, 1)},

PUT_DOWN ™ = {(u1,u1, us), (uz, u,u1), ..., (us, us, us)} )
represents the dining philosophers problem via a BIP system. The components of type
pHILO and those of type FORK may be designated by the same elements in the universe U.
For example, there is an interaction (up,u1,us) for type put_powN. Since the types of the
connected components are specified via the ports, this interaction connects the component
uy of type paILO with the components u| and us of type FORK.

Figure 2.4 gives a visualization of a part of the setting specified by Dijkstra and repre-
sented via a BIP system.

Whereas a BIP system describes a current setup of a distributed system, we also want to
specify the current state of a system, thus the current states of all its components.

Definition 8 (State Snapshot). Let S = |}, S; be the set of all states of all component types.
A state snapshot over the signature (C, I) is a function

c:UXC - S,

where ¢(u,C;) € S; for every 1 < i < n, hence the resulting state always belongs to the spec-
ified component type.

Furthermore, we want to describe components by using variables and add a map from
variables into the universe ¢. The combination of a BIP system, a state snapshot and a

mapping of variables into the universe suffices to describe a setting for our purposes.

Definition 9 (BIP Configuration). A BIP configuration over the signature (C,I) is a triple
(S,¢,v), where

e G is a BIP system over (C,I),
e ¢ is a state snapshot over {C,I), and
o v:V — U maps each variable to an element in the universe.
The set of all BIP configurations over the signature {C,I) is Xcry. The set of units is
E?C,D ={(S,5,v) | (S,¢,v) € X1y and the relations in S are empty}.

The definition of BIP configurations enables us to expand the BIP system specified in
Example 5 by a state snapshot and a variable mapping.
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Figure 2.4.: A part of the setting in the dining philosophers problem visualized as a BIP
system.
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Example 6. Let G be the BIP system defined in Example 5. We set S := Spyo U Spork and
define an arbitrary total function ¢ : U X C — S such that

¢(u1,PHILO) = THINKING, ¢(U3,PHILO) = EATING,

¢(u1,FORK) = BUSY, ¢(U2,FORK) = BUSY, ¢(u45,FORK) = FREE
and another arbitrary total function v : ‘V — U such that
v(x) = uy, v(y) = uz, v(a) = us, v(b) = uy, v(c) = uz.

Then (S,¢,v) is a BIP configuration, which is partly visualized in Figure 2.5.

We want to show that the set of BIP configurations X(c jy for a signature {(C, ) is a sepa-
ration algebra for an operation e and with Ewcy 1, as the set of units. We define the operation
such that the composition of two BIP configurations is the disjoint union of each of the
matching relations if the state snapshot ¢ and the variable mapping v are equal. And, since
the pointwise disjoint union is commutative, associative and cancellative, this carries over
to the operation e.

Theorem 1 (Multi-unit Separation Algebra). The triple (Z(c 1, "Z?c, [>) is a multi-unit sep-

0

. is the

aration algebra on the set of BIP configurations over the signature {(C,I), where X
set of units and e satisfies:

(S0,50,v0) 8 (S1,61,v1) = (S,6,v) &= CPWC' =CF forall C;€C,
91T =17 forallli€l,
So=¢1=¢ and
Vo=V =YV

if the relations are disjoint, hence C?O N C?' =0 and Il.60 N IZLS‘ =0 forallC;eC, and I; €I,
and (S0,50,v0),(S1,61,v1), (S,6,v) € Z(c,py.
Proof. First, we show that the operation e is commutative and associative, then we establish

the existence of a unit (8%, ¢,v) € E?C’ N for every element (S,¢,v) € Z(cp. And lastly, we

show the cancellativity of the operation.

1. Assume (&9,50,v0),(S1,61,v1),(S2,62,v2) € Z(c 1y, then we have

[(S0,50,v0) @ (S1,61,v1)] @ (S2,62,v2) = (S0,50,v0) ¢ [(S1,61,v1) @ (S2,62,v2)]
= (CTWCTHWC2 =C0w(C wC?) forall CieC,
ISP W =[50y (S w[%2) forall I €1,
so=¢1=¢2 and vp=vi=v.
If the operation e is defined on the given BIP configurations, then it is associative,
since the disjoint union of sets and the equality of functions is associative. Similarly,

commutativity follows from the commutativity of the disjoint union and equality of
functions.

13
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Figure 2.5.: A part of the setting in the dining philosophers problem visualized as a BIP
configuration. BIP configurations expand BIP systems by specifying the state
of each component and adding variables to address single components.
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2. Let (S,¢,v) € Z(cry be an arbitrary BIP configuration. Then there exists an element
(&2,¢,v) e Z?C Iy where the relations in S are empty, but the current states () and
the mapping of the variables (v) are equal. Thus

(S5 0@ 6 =(S,6),
since the union of any set with the empty set does not alter the original set.

3. Let (S0,50,v0),(S1,51,v1),(S2,62,v2) € X(c 1y be three BIP configurations such that

(©0,50,v0) @ (S1,61,v1) = (0,50, v0) ® (S2,62,V2)
= CwC =C0wC? forall CieC,
[S0w[C = [50w[® forall I; e,
So=61,60=62 and vo=vy, Vo=
= C7'=C> forallCeC,

15" =1 forall;el,

s1=¢2 and v =

The first equivalence holds because we assume that the operation e is defined on
the respective BIP configurations. Then the equality of (S;,¢1,v1) and (S7,¢2,v2)
follows and hence the operation e is cancellative.

0

Hence the triple (Z(c 1y, ®, X .

) is a multi-unit separation algebra. O

Two BIP configurations are matching if their state snapshot and variable mapping are
equal, and for each component and interaction type, the relations in both systems are dis-
joint. A BIP configuration (S, s, vo) is larger than another configuration (Sy,¢,v;) if the
relations in S are supersets of the corresponding relations in S;. The operation e enables
us to split certain BIP configurations into several smaller configurations and analyze those.
We will see that the smaller configurations are sometimes easier to study (see e.g frame rule
in Chapter 5). An example can be found in Figure 2.6.

In this section, we have defined component and interaction types, which are instantiated
in BIP systems. Then we extended the theory and defined BIP configurations as triples
of a BIP system, a state snapshot (representing the state of components), and a variable
mapping. Finally, we have proven that the set of BIP configurations Xc ;y with the operation
e and the set of units ZQ’C’ |, 1s a separation algebra. The next step is to define a logic to
specify properties of BIP configurations. The configurations will be models of the logical
formulae. But before, we make a short excursion to the impact of the state changes within
BIP configurations.

15
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Figure 2.6.: Two BIP configurations that can be composed via the operation e if the state
snapshot and the variable mapping match.

2.3. State Transitions for BIP Configurations

Remember that the component type specifies the behavior of each component by a finite-
state transition system. The labels on the transitions equal the ports of the component and
a component changes its state if and only if a port fires. A port fires when a connected
interaction fires. And interactions can only fire if they are closed and enabled. A closed
interaction is an interaction, where all the connected components are included in the BIP
configuration.

Definition 10 (Closed Interaction). Let (S,s,v) be a BIP configuration over the signature
(C,1I) and I; € I an interaction type such that a = (u1,...,Uuqa(j)) € I]“.:” is an interaction. Then
the interaction a is closed if, for each 1 <k < a(j), there exists a component type Cy € C that
contains the port If € Py and uy € Cke is a component in the configuration.

Intuitively, we can see the interactions as edges and an interaction is closed if no edges
are dangling. An interaction is enabled if there exist matching transition rules in all of the
connected components.

Definition 11 (Enabled Interaction). Let (S,¢,v) be a BIP configuration over the signature
(C,1I) and I; € I an interaction type. Then, an interaction (uy,...,uq(j)) € If is enabled if,
for each 1 <k < a(j) and each component Cy € C with port Ij? € Py and uy € CZ, there exists

a transition
1/\'

)
Sk 2k S
such that sy is the current state of the component uy € C € hence ¢(uy, Cy) = Sg.
Now, a closed and enabled interaction may fire, and if it fires then all the connected

components change their state accordingly. We say that it “may” fire because it fires non-
deterministically. Look at the following example for clarification.

Example 7 (Dining Philosophers). Figure 2.7 represents a BIP configuration that contains
one component of type PHILO, two components of type FORK, and interactions of the types
TAKE_LEFT, TAKE_RIGHT, and pur_powN. Each of the interactions is closed, because
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Figure 2.7.: An illustration of the BIP configuration (S,,¢2,v>) specified in Example 7.

e TAKE_RIGHT connects two components, a component y of type pHiLo that has TAKE_RIGHT'

as a port, and a component z of type FOrRK that has TAKE_RIGHT as a port,

e the same holds for the interaction TAKE_LEFT with the components y and x, and

e PUT_DOWN connects three components, the component y of type PHILO with port PUT_DOWN!

and the components x and z of type FoRk with ports PuT_pown? and puT_powN>. Since
x and z each have both ports, it does not matter whether we connect x or z as the third
component in the interaction.

Compare this with the definitions of the component and interaction types in Example 3 and
Example 4.

Fork x is in state FrEE, fork z is in state Busy and philosopher y is in state HUNGRY. Hence
only the interaction TAKE_LEFT is enabled since there exists a transition from the current
state HUNGRY to EATING with label TakE_LEFT! for the philosopher y, and a transition from the
current state FREE to the state Busy with label Take_LEFT? for the fork z. The other interactions
are not open, because both of them connect the philosopher y and the philosopher is in a
state, where the only possible transition has label TAKE_LEFT!.

Thus, the interaction TAKE_LEFT may fire, but we do not know when and if it does happen
(see Figure 2.8). If it fires, then the current BIP configuration changes into another config-
uration with a different state snapshot. The BIP structure and the variable mapping are not
affected by state changes and stay the same. In the new BIP configuration, the component
PHILO iS in state EATING and fork x is in state Busy. Then the only enabled interaction would
be puT_DOWN.

We use the transitions in single components to define a transition function for BIP con-
figurations. For each enabled interaction, there should be a transition from a current BIP
configuration to a configuration where exactly the states of the components change that are
connected by the interaction.

Definition 12 (Concrete Semantics). Let X = {I;(x1,...,Xq)) | Ij € 1, X1,...,Xa(j) € V} be
the set of all interaction atoms. Then we define a transition function ~.: Zcpy XX — Zc,n,
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Figure 2.8.: This BIP configuration is obtained if the interaction TAKE_RIGHT in Figure 2.7
fires.

where it is

,,,,, Xa(j))

Ii(x
(S,5v) 5, (S,¢",v), if and only if
1. a:=W(xy),...,v(xy)) € Ij6 is an interaction,
2. ais closed and enabled in (G, ¢, V),

3. ¢ =¢l(ur, Cr) & sp | ug € a,uy € Cg,ljf € Py] is the state snapshot, where s, is defined
in Definition 11.

We extend the notation to (S,¢,v) «XC (S,¢’,v) for a word w € * and write (S,¢,v) ~."
(S,¢’,v) if there exists any word w € * such that (S,¢,v) «XL- (3,¢’,v) is a transition.

Suppose that (S;,62,2) is the BIP configuration in Figure 2.7 and (S;,¢%,v2) is the
configuration in Figure 2.8. Then there exists a transition

TAKE_LEFT(Y,X) ~ ,
(S2,62,v2) ~¢ (G265, ).

In this chapter, we have combined the notion of separation algebras with BIP frameworks.
We defined BIP systems that represent a current manifestation of a BIP framework for given
component and interaction types (C,I). Furthermore, we specified BIP configurations as
extensions of BIP systems that also model the current state of the components. We defined
an operation e and a set of units such that the set of BIP configurations for a fixed signature
(C,I) is a separation algebra. This allows us to split BIP configurations into smaller BIP
configurations and put them back together.

Furthermore, we considered the types of components and how they lead to state changes
within a BIP system. A BIP configuration transforms into another BIP configuration if
interactions fire.

18



There are thus two different views of BIP configurations: On one hand, we regard a static
BIP configuration that is part of a separation algebra and that can e.g. be split. And on the
other hand, we consider dynamic BIP configurations, where interactions may fire and states
of components may change. In the next chapters, this difference will be crucial because it
will result in two different approaches for the proofs of the correctness of programs.
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3. Separation Logic on BIP

Since we want to analyze reconfiguration programs on BIP systems, we need to specify
preconditions that hold before the execution of such a reconfiguration program and prove
postconditions that hold afterwards. Pre- and postconditions are usually predicates that
contain all elements having a certain property (predicates were defined in Definition 2). In
our case, the predicates are subsets of the set of all BIP configurations over a fixed signature
and we want to describe them by their distinct property. For that purpose, we define the
separation logic on BIP that is an adaption of abstract separation logic (see [COY07]).

In this chapter, we give the syntax of the separation logic on BIP SL};IP(C,I ) and define
its semantics on BIP configurations. As in the previous chapter, the universe U and the set
of variables V remain fixed. Additionally, we assume that C and ¥ are fixed, countably
infinite sets, where C is a set of constants (e.g. the set of natural numbers) and P is a set
of predicate symbols and each predicate symbol A € P has an arity @(A). Furthermore, we
assume that (C, ) is a signature as in Definition 7.

In order to describe properties of BIP configurations, we want to be able to use the usual
conjunctions and implications (hence we need to define A and —). Furthermore, we want
to say that a property holds on one part of the configuration and another property holds on
the other part (this is the spatial conjunction *), we want to retrieve the types of components
and interactions, the current state of a component and specify a BIP configuration that is
empty. The general construction of SLEIP(C, I) differs from the construction of separation
logic on heaps mainly in the atomic formulae, furthermore, we do not consider the spatial
implication - (compare with [I001]).

Moreover, we define inductive predicates that allow an inductive description of properties
of BIP configurations. For the inductive predicates, we assume that a set of rules R for the
unfolding of the predicate symbols is given. This will be specified formally in Definition 16.

The syntax is defined via the Backus-Naur normal form.

Definition 13 (Syntax). The separation logic on BIP configurations over the signature {(C,I)
for a set of rules R is the set SL%IP(C, I) defined by
¢ m=emp | Ci(x) | Ij(x1,....%(j) | state(x,s) | A(t1,....lon)) |
true | —¢ | ¢ | pAY | Ax.d

with ¢,y € SLEW(C,I), C;e C for 1 <i<n Ij€lfor 1 < j<m, A€P, x,x1,....Xa(j) €V
and s € S; for 1 <i <n. Furthermore, t1,...,tya) € VUC are so-called terms. The elements
VA SL21P<C,I) are called {C,I)-formulae.

Here, emp describes an empty system and the atomic fomula C;(x) specifies the exis-
tence of exactly one instance of the component type C; which is mapped to by x. Similarly,
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Ij(x1,...,xq(j)) states that there exists exactly one instance of the interaction type /; which
connects the components pointed at by x; to x4;). The atomic formula state(x, s) speci-
fies that the component x is in state s. Even though there may exist multiple components
described by x, this is well-defined since each of the components has a different type and
only one of the component types has state s in its set of states. Furthermore, the formula
A(t1,...,ta(a)) is a predicate, which can be unfolded using the rules R (see Definition 16).
It represents an arbitrary unfolding of the predicate symbol and can be used to describe
inductive structures.

The star operator * represents the spatial conjunction that is used to “divide” BIP con-
figurations into several parts (see e.g. Figure 2.6). The other symbols have their usual
meanings; true represents a valid formula, —¢ negates the boolean valuation of the for-
mula ¢, A corresponds to conjunction and 3 is the existential quantifier. Following the
convention, we define that * has higher precedence than A, hence AAB*C =AA(Bx*C)
for formulae A, B,C € SLR(C,I). Furthermore, we write A V B as a shorthand for the for-
mula —(—=A A =B). Last but not least, we call a formula in separation logic on BIP that is
constructed without predicate symbols predicateless.

Before we specify the interpretation of a predicate symbol via the set of rules R, we
give examples for predicateless formulae in SL]%IP(C, I), define symbolic configurations and
specify the standard function that maps a (C, I)-formula to the set of its free variables.

Example 8 (Dining Philosophers). Let (C,I) be the signature of the dining philosophers
problem as defined in Example 5. Exemplary formulae in SLB(C, 1) are

emp PHILO(Y) FORK(Z) A state(z, BUSY)
PHILO(Y) * TAKE_LEFT(Y, Z) * FORK(z) and

da.rork(a) * TAKE_RIGHT(Y, @) * PHILO(Y) * TAKE_LEFT(Y, 7) * FORK(Z) * PUT_DOWN(Y, a, 7).

Remember that pHILO and FORK are component types and TAKE_LEFT, TAKE_RIGHT, and PUT_DOWN
are interaction types. Furthermore, Busy is a possible state of an instance of the component
type ForK and x, y and z are variables in V.

A symbolic configuration is a formula in SL%IP(C, I) in a certain form. It allows a direct
construction of a model by creating a BIP system with the specified components and in-
teractions, specifying matching state snapshots and variable mappings, and composing the
resulting BIP configuration with models of the predicates.

Definition 14 (Symbolic Configuration). A symbolic configuration is a formula of the form

8
Ax. 3k K Gy, ()% 3k L T, (vg) 3k 1 At A\ state(x, ),

s=1

over a signature {(C,I), where x € (Vk/, k' <k, is a tuple of variables and Cip e C are com-
ponent types forall 1 <p <k, y, € VeUa) are tuples of variables and 1 j, € I are interaction
types for all 1 < q < €. Furthermore, t, € (VUC)* ") are tuples of terms and A, € P are
predicate symbols for all 1 <r <h, and x; € V and sy €S forall 1 <s < g.
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A symbolic configuration with no occurrences of predicate atoms (i.e. h = 0) is said to be
predicateless.

Definition 15 (Free Variables). The set of free variables fv(y) C V of a {C,I)-formula €
SLEIP(C, I) is defined inductively as

o fv(emp) = fv(true) =0,

o tV(Ci(x) = {x}, tv(Ij(x1,..., Xa(j))) = {X1,. .., Xa(j)}, TV(state(x, s)) = {x} and
fv(A(ty,... ,ta(A))) ={t,... ,IQ(A)} ny,

o V(=) = fv(y), fv(¢ x ) = fv(yy) UTv(Y) for x € {x, A, V} and
fv(@xy) = fv(y) \ {x},

forCieC, I el, x,x1,...,%(j) €V, SES, and ¢,y € SL%IP(C,I).

Finally, we can give the interpretation of a predicate symbol that is defined by a set of
rules R, which is called a system of inductive definitions. Predicate symbols are interpreted
by unfolding the symbols following the rules R to obtain new formulae; here, an unfolding
is roughly a substitution of a predicate symbol by the right-hand side of a rule. This can be
done iteratively until a predicateless formula is obtained, if the rules are well-defined.

Definition 16 (System of Inductive Definitions). A system of inductive definitions (SID) is
a set R of rules of the form A(t1,...,t44)) < p, where p is a symbolic configuration, such
that fv(p) C{t1,....ta)} NV, A € P is a predicate symbol and t1,... ,ty) are terms.

Given symbolic configurations W and ¢, the rewriting step ¥ < ¢ replaces a predicate
atom A(v1,...,Vea)) of Y with the formula pB, where:

1. A(ty,...,tq)) < pisarulein R,

2. 0:{t1,....ta)}INV — V is an injective substitution such that, if t; € V, then 6(t;) = v;
forall 1 <i<a(A),

3. ift; € Cis a constant, then v; = t;, for all 1 <i < a(A).

Assume that the free variables of p are fv(p) = {x1,...,x,} € {t1,...,4a)}, then pf is the
formula, where each free variable x; is substituted by 6(x;), for 1 <i <n. An example of
inductive predicates can be found at the end of this chapter.

In the following, we denote by «, the reflexive and transitive closure of «g and <—%l ¢
specifies an unfolding y <, ¢ such that ¢ is predicateless.

Now we want to define a valuation of the formulae in the separation logic SL%IP(C, I) that
valuates the formulae on BIP configurations.

Definition 17 (Semantics). We define the valuation of the separation logic SLB¥(C,I) in-
ductively over the structure of the (C,I)-formulae. Let (S,¢,v) € X(c1y be a BIP configura-
tion, then

o (S.gv) Fempiff (.. €Y.,

e (S5, EC)IfC7 = {nx), C‘f =0 forall Cj € C\{C;} and I? =0 forall I; € I,
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(S.6.) E Li(x1,.... Xa() iff 17 = {((xD), ..., (Xa)}, Ij6 =0 for all I; € I\{I;} and
Cl.e =0 forall C; e C, and

(S,¢,v) E state(x, s) iff s € S; for some C; € C, v(x) € Cl.6 and ¢(v(x),C;) = s.

(S,¢,v) E true is always valid, and

(S,6,v) EA(t1,...,Ap)) iff (S,5,v) E ¢ for some unfolding A(t1,...,Ax@)) <R .
Furthermore, we define

(S, E-¢iff (S,6.v) ¢,

(S,6,v) E ¢+ iff there exist (So,50,v0),(S1,61,v1) € Z(c,1y such that (So,50,v0) ®
(G1,51,v1) = (8,6,v), (S0,50,v0) E ¢ and (S1,51,v1) F Y,

(S, eMESAYIF(C,6,v) E ¢ and (S,5,v) Ey, and
(S,¢,v) E Ax.¢ iff there exists u € U such that v’ := v[x « u] and (S,¢,V") E ¢.

It is ¢,WESL%IP(C,I), CieCforl<ismljelfor1<j<m AeP, x,x1,....%) €V
and s€S;for1 <i<nandty,... ,tya € VUC.

When defining the existential quantifier, we write the expression v[x < u]. This means
that we obtain a new function where all variables map to the same elements as in v except
for x, which is mapped to u.

We see that emp specifies all BIP configurations where the relations over the signature
(C,I) are empty, thus configurations without any components and interactions. Unless stated
otherwise, the specification of components and interactions signifies that they are the only
components and interactions in the model. For example, models of the formula C;(x) contain
exactly one component of type C; and no other components or interactions. The spatial
conjunction * specifies that one property should hold on one part of a BIP configuration and
another property should hold on the other part. Models of the formula C;(x) * true contain
a component of type C; on one part of the BIP system and the other part of the system is not
specified, hence they may contain an arbitrary number of other components and interactions.

A BIP configuration is a model of a predicate symbol A(f1,...,,(4)) if it is a model of an
unfolding of the predicate symbol.

Example 9 (Dining Philosophers). We define a BIP configuration (&,,¢3,v,) that is repre-
sented in Figure 2.7 and analyze variations of the formulae given in Example 8. Let the BIP
system S; be defined as
Sy =(¢ PHILO™? = {ur}, FORK =2 = {ug,us},
TAKE_LEFT>2 = {(uz,ul},TAKE_RIGHTez = {(up,u3)},
PUT_DOWN"2 = {(uo,u3,uy)} ).
Furthermore v, : V — U is an arbitrary variable mapping with v>(x) = uy, v2(y) = up and

v2(z2) =u3 and ¢p : U X C — S is an arbitrary state snapshot with ¢»(u3,FORK) = BUsY. We
observe of which formulae the BIP configuration is a model:
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The BIP configuration (S;,¢2,v2) is not an element of the set of units Z<C’1>®, since
the relations in the BIP system S, are not empty and (S;, ¢, v2) contains components
and interactions. Thus (&,,¢7,v2) £ emp.

The configuration (S,,¢2,v>) is not a model of pHILO(Y) either, since there exist other
components and interactions, e.g. the relation FOoRK =2 is not empty. Let us define
another BIP structure &, where the only non-empty relation is pHILO® = {15}, then
(S, ¢62,v7) is a model, since vo(ur) =y. We write (S,¢2,v2) | PHILO(Y).

It is v2(z) = u3 and u3 € Fork =2. Furthermore ¢»(u3,FORK) = BUSY and hence
(S2,62,v2) E state(z,Busy). But (S;,¢2,v2) £ FORK(2), since e.g. the relation pHILO 2
is non-empty. Thus (S,,¢2,v2) [~ FORK(Z) A state(z, BUSY).

Again, it is easy to see that (S2,¢2,v) is not a model of PHILO(Y) * TAKE_LEFT(Y, 7) *
FORK(Z), since e.g. the relation FORK =2 contains more than a single element. We can
slightly adapt the formula and write PHILO(Y) * TAKE_LEFT(Y, 7) * FORK(Z) * true. Then

(32,62, v2) E PHILO(Y) * TAKE_LEFT(Y, 7) * FORK(Z) * true,
since there exist BIP systems S;; and Sj; such that

(21,62,72) [ PHILO(Y) * TAKE_LEFT(y, 2) * FORK(2)

and (S21,62,v2) F true.
Namely
Sy1 =¢ PHILO 2! = {us}, FORK =21 = {us},
TAKE_LEFT 2! = {(uy, u3)}, TAKE_RIGHT 2! = (),
PUT_DOWN621 =0 ) and
S =¢( PHILO2! = (), FORK 22 = {ur},
TAKE_LEFTSZZ = (Z),TAKE_RIGHT622 ={(uz,uy)},

PUT_DOWN 2 = {(u2,u3,u1)} ).

It is straightforward to check that the correlating relations are disjoint and hence
(S21,62,v2) @ (G22,62,12) is defined and equals (S2,62,12).

Last but not least, we have

(32,62, v2) | FORK(X) * TAKE_RIGHT(Y, X) * PHILO(Y)

* TAKE_LEFT(Y, Z) * FORK(Z) * PUT_DOWN(Y, X, 7).
If we set v} := vy[a « v2(x)], then

(©2,62,v)) [ FORK(a) * TAKE_RIGHT(Y, @) * PHILO(Y)

* TAKE_LEFT(}, Z) * FORK(Z) * PUT_DOWN(Y, d, Z)
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and hence (&3, ¢»,v2) models da.FORK(a) * TAKE_RIGHT(Y, @) * PHILO(Y) * TAKE_LEFT(Y, 7) *
FORK(Z) * PUT_DOWN(Y, @, 7).

In the rest of this chapter, we define the implication between formulae and specify the
sets of components and interactions in a symbolic configuration. Furthermore we give an
example for inductive predicates on the dining philosophers problem.

Definition 18 (Implication of Formulae). Let ¢,y € SL%IP(C, I) be formulae. Then we define
eEY iff (S.6.v)E ¢ implies (S,6,v) Fy
for all BIP configurations (S,¢,v) € X, py.

Definition 19. Let ¢ be a symbolic configuration over a signature (C,I) of the form given in
Definition 14. If { is quantifier-free and predicateless, then we define the set of component
axioms

L) ={Ci,(xp) |1 <p<k}
and the set of interaction atoms
W) ={lj,(xp) | 1<g <t}

We extend these notations to

o cxistentially quantified symbolic configurations ¢ = Axy ... Axg.p, where x1,...,x, €V
are assumed to be pairwise distinct and distinct from the free variables fv(¢), as

Lo(¢) :=T(W0) and Zy(¢):=Z(Y0),
where 0 : {x1,...,x} Ufv(¢) — V is an injective substitution, and

e finite disjunctions n = \'_, ¢; of symbolic configurations, as

Tom = J To@) and S =] Zo(g),
i=1 i=1

where 0 : | J!_, fv(¢;) = V is an injective substitution.

For a predicate atom A := A(x1,...,Xq4)), we define

T'y(A) = U{ To(¢) | A —g ¢, ¢ is predicateless }, and
Zo(A) := U{ 20(p) | A —x ¢, ¢ is predicateless }

and generalize the notation to finite disjunctions of symbolic configurations that, moreover,
contain predicate atoms. Note that Ty(n) and Zy(rt) are possibly infinite in the latter case.

Now we look at an inductive predicate for the dining philosophers problem that represents
a table with forks and philosophers that are connected by some interactions.
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Example 10 (Dining Philosophers). Inductive predicates enable the definition of tables for
the dining philosophers problem of arbitrary but finite size. We start by defining a predicate
seatR( fo, f1) that encapsulates a philosopher, a fork, and some interactions:

seatR(fo,fl) < dp; . TAKE_LEFT(p1, fo) * PHILO(P1 ) * TAKE_RIGHT(p1, f1)
* FORK( f]) * PUT_DOWN(p1, f1, fo)-

There exists only one rule for this predicate, hence the predicate symbol is actually only a
placeholder for a predicateless symbolic configuration.

fo P1 fi

TAKE_LEFT [TAKE_RIGHT]|

FORK PHILO FORK

PUT_DOWN

Figure 3.1.: A seat for a right-handed philosopher.

We can use the previous predicate to define a simple chain of right-handed philosophers
by linking several seats together:

chain(fy, fo) < emp
chain(fy, f;,) < 3f1 - seatR(fo,fl) *chain(fi, f,)-

This predicate contains two rules and, since the second rule can be applied inductively, the
predicate can represent chains of arbitrary but finite size. We define the set R such that it
contains exactly the three previously defined rules. An exemplary unfolding might lead to

chain(fo, fu) <% 3p1, 2, fi . TAKE_LEFT(p1, fo) * PHILO(p1) * TAKE_RIGHT(D1, f1)
* FORK(f1) * PUT_DOWN(p1, f1, f0)
* TAKE_LEFT( Py, f1) * PHILO(p2) * TAKE_RIGHT(p2, f,)
* FORK( f;) * PUT_DOWN(p2, fn, f1)

«chain(f, f),

which represents a chain of two philosophers and corresponding forks and relations.

fO pi fl fn

TAKE_LEFT [rAKE_RIGHT|

FORK PHILO FORK o FORK
chain(fi, fu)

PUT_DOWN

Figure 3.2.: A recursive chain of right-handed philosophers that is unfolded once.

Now, a table is a chain where the first and the last fork are equal. Hence, chain(fy, fo) is
a table with zero or more philosophers and forks that alternate each other and are connected
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by suitable relations.

Separation logic on BIP configurations SLgIP<C, I) is a logic derived from separation
logic on heaps which enables us to check properties on BIP configurations; whether they
are empty, whether they contain certain components, and whether some components are
connected in a special way. Moreover, we can check the current state of components and
define predicates with systems of inductive definitions to enable more general formulae.

In the next chapter, we define the programming language £(C,I) that is used to write
down reconfiguration programs on BIP configurations. The separation logic on BIP config-
urations enables us to specify pre- and postconditions for those programs (see Chapter 5)
and hence prove properties of programs.
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4. Reconfiguration Language for BIP

In Chapter 2, we defined BIP configurations as triples containing a BIP system, a state
snapshot and a variable mapping. Then we specified the separation logic on BIP SLf;IP (C,I)
that is validated on BIP configurations in Chapter 3. It is used to specify properties like
the existence of a component of some type, the state of a component or the existence of
an interaction between components. Now, we want to define a language that enables us to
describe reconfiguration programs on BIP configurations.

DR-BIP While BIP configurations represent settings that occur in the BIP framework,
there exists an extension which is called the dynamically reconfigurable behavior, inter-
action, priority framework (DR-BIP). This extended framework uses motifs that combine
component and interaction types with reconfiguration programs (see [BBBS18]). Those
programs specify how the current BIP system should be transformed into a new system,
thus how and if components and interactions may be added or deleted. In Example 5, we
defined a BIP system that models a setting of the dining philosophers problem. An ex-
emplary reconfiguration program might predefine how to remove a philosopher from the
table. This is not merely the action to remove the component pHILO, but one also needs to
ensure that the component pHILO is in the correct state (typically state THINKING, since the
philosopher should not leave the table if she holds one or two forks) and that the incident
interactions and a corresponding fork are deleted or reconnected.

The first step is to define the atomic actions for the addition and deletion of single compo-
nents and interactions. Furthermore, we want to check properties and then combine actions
sequentially or by non-deterministic choice. For this purpose, we specify the programming
language L(C,I) that enables us to alter BIP configurations over the signature (C, ). Most
of the actions are pretty straightforward — only the sequential composition needs further
discussion, because it combines two atomic actions into a non-atomic action and hence the
states of the components in the BIP configuration can change in between, see Section 2.3.

In this chapter, we define the syntax and semantics of the programming language £(C,I)
over the signature (C, I), which is used to describe reconfiguration programs on BIP config-
urations. Furthermore, we assume that the universe U and the set of variables V are fixed,
countably infinite sets and that (C,I) is a signature. For the syntax of the commands, we
need the definition of downward closure on predicates and (C, I)-formulae.

Definition 20 (Downward Closure). Let p € P(X) be a predicate over a separation algebra.
Then p is downward closed iff o € p implies that o’ € p for all 0’ < 0.

A (C,I)-formula ¢ is downward closed if the predicate p :={(S,s,v) € Zic.py | (S,6,V) E ¢}
over the set of BIP configurations is downward closed.
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Remember that the order < is defined through the operation e in the separation algebra
(see Definition 1). We give the definition of the syntax of the programming language £{C,I)
via the Backus-Naur normal form.

Definition 21 (Syntax of the Language £(C,I)). The programming language L{C,I) over
the signature (C,I) is defined by

¢ ::=new(C;,x) | delete(C;,x) | connect(lj,x1,...,Xq()) |
disconnect(/},x1,..., X)) | skip | when¢do ¢ |
withydot | ;¢ | €+€ | £F

with €,0' € L{C,I), C;eC for1<i<n, Ij€lfor1 <j<m, x,x1,...,Xq;) €V and ¢, €
SL%lP (C,I) are formulae, where ¢ is downward closed.

The elements in L{C,I) are called programs, if they are constructed via other elements in
L{C,I), or commands, if they are primitive.

The commands new(C;, x) and delete(C;, x) signify the addition and deletion of a com-
ponent of type C; that is referenced by the variable x. Similarly, the commands connect(/;, x1,
..., Xq(j)) and disconnect(/}, x1,..., Xq(j)) stand for the addition and deletion of interactions
of type I; that connect components Xp,...,Xq(j). The command skip denotes that the BIP
configuration does not change. Furthermore, the command when ¢ do ¢ checks whether
the current BIP configuration models the downward closed formula ¢; if it is a model then
the program ¢ is executed directly (the components cannot change their states in between
the check and the first execution in £), otherwise it halts silently. Since ¢ is downward
closed, it cannot describe the existence of components or interactions, since the empty BIP
configuration contains no components or interactions and it is a subconfiguration of each
BIP configuration. The command with ¢ do £ combines a check for some properties (like
when ¢ do ¢) with a variable assignment. It tries to map the free variables in the formula i to
elements in the universe U such that the current BIP configuration models . If it succeeds,
then the program ¢ is executed directly, otherwise it also halts silently.

All of the commands described above are atomic actions, hence the states of the compo-
nents do not change while one of those commands is executed. However, the composition
of two or more such commands is not atomic anymore. There are three ways to compose
commands: The semicolon combines two commands sequentially, the plus symbol should
signify that one of the commands is executed and the choice is non-deterministic. The star
is the Kleene operator, thus the command gets executed an arbitrary but finite number of
times.

Example 11 (Dining Philosophers). Let (C,I) be the signature of the dining philosophers
problem as defined in Example 5. Then, an exemplary program in the language £(C,I)
could be:

Listing 4.1: Create Lonely Philosopher.

1 new(PHILO,VY);
2 new(FORK,X) ;
3 new(FORK,Z);
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4 connect (TAKE_LEFT,V,X);
5 connect (TAKE_RIGHT,Y,Z);
6 connect (PUT_DOWN,Y,X,Z);

This program should create a philosopher y and two forks x and z that are arranged such that
the philosopher can think, be hungry or eat. See Figure 2.7 for an illustration.

Before we define the semantics of the programming language formally, we define the set
of modified variables that will be needed in the reconfiguration rules in Chapter 5.

Definition 22 (Modified Variables). The set Modifies(¢) C V of variables that are modified
by a program € € L{C,I) is defined inductively as

o Modifies(new(C;, x)) = {x}, Modifies(when ¢ do ¢) = Modifies(£), and
Modifies(with y do €) = fv(y) UModifies(£),

e for any other atomic command ¢, it is Modifies(¢) = 0, and

e Modifies(¢ x ¢") = Modifies(£) UModifies({’) for x € {;,+} and
Modifies(¢*) = Modifies(£),

where C; € C for 1 <i<n, {,t' € L{C,I), and ¢, € SL,%IP<C,I) with ¢ is downward closed.

The programming language £{C,I) describes actions on the set of BIP configurations
X(c,ry unified with a new element error. This element is returned if the program tries
to delete non-existent components or interactions. We extend the set of predicates P(Zcry)
accordingly by adding a new predicate T, that represents every predicate p C Xc yU{error}
that contains the element error. Furthermore, we set

PEeny)’ =PEcn) V(T

and extend the partial order on the set of predicates by g C T for every g € P(Z(c,1y)-

Now we can define the operational semantics of the programming language £(C,I) on
BIP configurations by giving transition relations [€]] € Z(c 1y X (Z(c,1y U {error}) for the
commands ¢ € L{C,I).

Definition 23 (Operational Semantics of the Programming Language £(C,I)). We give the
operational semantics for each command of the language L{C,I), where £ : (S,¢s,v) —
(&,¢’,V') states that the execution of the program € on the BIP configuration (S,g,v) €
2.1y leads to the configuration (S',¢’',v') € X py.

uelUUu¢C: & =(CE,....CAUlub,...,C2IZ,....I3)

nodyseedy

new(C;, x) : (3,6,v) = (&,6[(,Ci) — sV, v[x — u])

v(x)€C? S =(C3,....CP\v(O)},....,C2 I3, I3

notq] oo

delete(Ci,x): (S,6,v) = (€',6,v)

v(x) ¢ C?
delete(C;,x): (S,¢,v) — error
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S =(CF,....,Co.IT,... . I7 U{(V(x1),.... (X))} - I )

nodys-

connect(fj, X1,..., X)) : (S,6,v) = (&',6,v)

(V(xl )7 ey V(xa(l))) € ]lg
& =(C3,.. ,CEIE, . BNV, o, V@D IS
disconnect(/;, xi,...,Xaq) : (S,6,v) = (&',¢,V)

(X)), V(X)) € 17
disconnect(/;, x1,...,X.)) : (S,5,v) = error

skip: (S,6,v) = (S,6,v)

(S,eE9¢ :(S,6,v) > (E,¢,V)
wheng¢ do ¢: (S,¢,v) > (&,¢,V)

fV(l//)Z{Xl,...,Xi} M],...,uiErL[
Vi=vlx —u,xieu] (SR L(S,6,7) = (€67,
withydo¢:(3,¢,v)— (S,¢ V)

to: (S,6,v) = (C,¢",V)
havoc: (&',¢",V') = (&',¢",v) 6 :(C,¢"V)—>(&",¢" V")
;01 : (S,6,v) = €1 : (&",6"", V")

4 (S,6,v) = (E,¢",V)
lo+01:(S,6,v) = (E,¢",V)

fori=0,1

1 (G,6,v) > (G,5,v)

£:(G,6,v) = (€.¢"V)
havoc: (&,¢',v) = (€.¢".V) £ :(€.¢". V) = (€".¢"V")
(S,6.v) = (7.67)

All the triples (S,¢,v),(S',¢',V'), etc. are BIP configurations over the signature {C,I),
&,y are (C,I)-formulae, where ¢ is downward closed, x,x1,...,Xqj) € V are variables and
{, 6y, € L{C,I) are programs.

The previous definition starts with the transition relation for the statement new(C;, x),
where C; € C is a component type and x € V is a variable. If the initial state is a BIP
configuration (S,¢,v), then the final state is the configuration (&',¢[(«,C;) « s?],v[x —
u]). The statement adds a new component x of type C; and describes this new component
internally by an element u € U, which is currently unused for this component type. It
changes the BIP system & to the system & by extending the relation C? such that C;.S, =
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Cf U {u}. Furthermore, it sets the state of the component, which is described by u, to the
initial state s? € S; of this type, and alters the variable mapping such that x maps to u.

The deletion of components is quite intuitive; if the component does exist, then the match-
ing element v(x) = u is deleted from the relation that belongs to the component type, and if
the component does not exist then it returns error.

The transition relations for the statements connect and disconnect are similar to the
previous transition relations (although connect is even simpler than new because it as-
sumes that the components that should get connected already exist). The transition relation
when ¢ do {checks whether the initial BIP configuration is a model of ¢ and executes ¢
directly in this case. And with ¢ do ¢ is an extension of the previous command that tries to
map the free variables {xi,..., x;} of the formula  (see Definition 15) such that the resulting
BIP configuration is a model of .

Before going into the semantics of composed programs, we look at examples of actions
on BIP configurations.

Example 12 (Dining Philosophers). The component and interaction types for the dining
philosophers problem were already specified in Example 3 and Example 4. We look at two
actions on BIP configurations over the signature (C, I) of the dining philosophers problem:

o Suppose that we start with an empty BIP configuration (S,¢,v) € Z?C’ Iy

relations in the BIP system & are empty. If we execute the program

where all the

new(PHILO, y)
then one possible final state is the BIP configuration
(&', ¢[(uz,PHILO) < THINKING], v[y « u3]), for uy € U,

where the only non-empty relation in & is PuiLo® = {u,}, the state of the philosopher
y is the initial state THINKING and the variable mapping v is defined such that it maps
the variable y to the element u,. This is also illustrated in Figure 4.1.

e Suppose now that we start in the BIP configuration (S, ¢,v), where the BIP system
contains one component of type pHILO described by the element u; € U, and com-
ponent of type Fork described by the element u; € U and one interaction of type
TAKE_LEFT described by the tuple (u2,u;) (hence it connects the philosopher and the
fork). Furthermore, both components are in their initial states. If we execute the
command

disconnect(TAKE_LEFT,Y, X)

then the new BIP configuration is (&', ¢, v), where the relations in the BIP system &’
contain only the component u, of type pHILO and the component #; of type FORK, but
no interaction.

The transition relations for sequential composition (£y;£1), non-deterministic choice (£ +
1), and the Kleene star (£*) are defined as expected, except for the relation havoc, which is
in between every two sequentially composed statements. In the next chapters we also want
to use the following notation:
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y=up

emp new(pPHILO,y) .

PHI

Yy up y=up
X = U X Up
TAKE_LEFT ._’ ) disconnect .—’ )
? (TAKE_LEFT,Y,X) ?
FORK &) FORK )
PHILO PHILO

Figure 4.1.: The upper part illustrates the addition of a new component of type pHILO to an
empty BIP configuration and the lower part shows the execution of the com-
mands disconnect(TAKE_LEFT, Y, x) on a BIP configuration.

Definition 24 (Valuation of Programs). For a program € € L{C,I) we define the function

€1 : Zcry = PEen)'s

where (S',¢",V") € [L1((S,s,v)), for (S,5,v) € Z(c.ny, if and only if the execution of € on
(S,¢,v) might lead to the BIP configuration (&',¢’,v’) according to the semantics given in
Definition 23.

The relation havoc alters only the function ¢’, thus only the states of the components
in the BIP configuration. The intuition behind havoc is that commands are atomic but a
sequence of commands may not be atomic. Thus the system keeps “working”’; interactions
may fire and components may change states. Take a look at Section 2.3 for a more pre-
cise analysis, where we defined the terms closed interaction and enabled interaction and a
transition function ~». for BIP configurations.

We define the semantics of havoc and since numerous interactions may fire between the
execution of two commands ¢y and ¢;, we define the semantics iteratively.

Definition 25 (Operational Semantics havoc). The operational semantics of havoc in the
same form as in Definition 23 as:

havoc: (S,¢,v) = (S,5,v),

A
(S,6,v)~ (8,6",v) havoc: (S,¢",v) = (S,¢”,v)
havoc : (S,¢,v) = (S,6",v),

where (S,¢,v),(S,5",v),(S,¢",v) € X(c 1y are BIP configurations, A € X is an interaction

A . . ..
atom and ~> is the function defined in Definition 12.
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Yy up

@—©

TAKE_LEFT \?
FORK

priLo O

Figure 4.2.: The component x is in state FREE and the component y is in state THINKING, hence
the interaction is enabled.

XUy

Example 13 (Dining Philosophers). Let us assume that we have a BIP configuration (S, ¢,v) €
2,1y that contains a philosopher and a fork, which are connected by an interaction of type
TAKE_LEFT (see Figure 4.2). The state of the philosopher is THINKING and the state of the fork
1S FREE.

The only possible transition starting from the current state snapshot is (S, s, v) TA%LCEFT
(S,¢’,v), where ¢ specifies that the philosopher is in state HUNGRY and the fork is in state
BUsY. Furthermore, there exists no transition starting from (S,¢’,v). Hence, the execution
of havoc leads to a set containing exactly the two BIP configurations (S, ¢,v) and (S,¢”,v).

In this section, we have defined the programming language £(C,I) on the set of BIP
configurations that allows us to define reconfiguration programs. In the next chapter, we
combine the separation logic SLE(C,I) with the programming language £(C,I) to state
and prove pre- and postconditions of programs in £{C,I).
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5. Rules for the Verification of
Reconfigurations

We have defined BIP configurations, the separation logic on BIP, and the programming lan-
guage L(C,I) that can be used to describe reconfiguration programs on BIP configurations.
We want to be able to verify the partial correctness of those programs using separation logic.
For that purpose, we adapt the notion of Hoare triples and define axioms and inference rules.

The first section of this chapter gives axioms and inference rules for reasoning about
static BIP configurations. We call this set of inference rules the reconfiguration rules and
prove their soundness. The soundness of the frame rule is proven in the second section.
The next section states the axioms and inference rules for reasoning about concurrent BIP
configurations (the firing of interactions). This set of rules is called havoc rules, since
havoc is also the name of the relation that describes the state changes, and we also prove
their soundness. And lastly, the fourth section contains composition rule for concurrent BIP
configurations and the prove of its soundness.

5.1. Reconfiguration Rules

In this section, we give a set of axioms Ax and inference rules for static BIP configurations
and prove their soundness. We start by defining Hoare triples that resemble the triples
defined in [Hoa69], inference rules, and soundness.

Definition 26 (Hoare Triple). A Hoare triple is a triple
{P} {0}

where P,Q € SL,%IP(C, I are formulae and € € L{C,I) is a program. We call P the precon-
dition and Q the postcondition. Furthermore, the Hoare triple is valid, if for all (G,¢,v) €
X

(S,5.v)EP implies (€',¢",V)EQ, foral(E,¢,v)elll(Sg,)
Definition 27 (Inference Rule). An inference rule is a rule

Py P,
C:

where Py, ..., P, are premises in form of Hoare triples or assertions and C is the conclusion
in form of a Hoare triple.
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Definition 28 (Soundness). We write Ax+{ P} € { Q } to state that a Hoare triple can be
derived via a set of inference rules from the set of axioms AX. Then the rules are sound
if every proof-theoretic consequence of some axioms AX is also a semantic consequence of
those axioms, hence if

AxH{P}C{Q} implies AxXE{P}{{Q}

for (C,I)-formulae P and Q and a program € € L{C,I).

We start by defining the set of axioms Ax and state that the universe U and the set of
variables V are fixed, countably finite sets. Moreover, the signature (C, ) is arbitrary but
fixed throughout the rest of this chapter. The axioms are Hoare triples for atomic commands
in our programming language £(C,I).

Definition 29 (Small Axioms). The set of axioms AX contains the Hoare triples
{ emp } new(C;, x) { C;i(x) A state(x, s?) 1,
{Ci(x) } delete(Cj,x) { emp },
{ emp } connect(Ij,xl,...,xa(j)) { Ij(xl,...,xa(j)) 1
{Ij(x1,...,Xe(j)) } disconnect(/j,x1,..., X)) { emp }, and
{P} skip { P},
where C; € Cand I € I, and x,x1,...,Xq(j) €V.
Theorem 2. The small axioms Ax defined in Definition 29 are valid.

Proof. We prove the validity in the case that a BIP configuration is mapped to another
BIP configuration. The case that a BIP configuration is mapped to the error state can be
suppressed, since we define our rules for partial correctness only.

o Let (S,6,v) € Z(cy be a BIP configuration such that (S,¢,v) = emp. We use the
operational semantics of Definition 23 and obtain

new(C;,x) : (S,6,v) = (€',¢",v)
such that & = ( CZ,...,CEU{u},...,Co,I2,.. ., 12 )y =(0,...,CZ = {u},...,0),
¢ =¢[u,C;) « sV and v = v[x « u]
for some u € U. Then (&',¢’,v") E Ci(x) and (&', ¢’,V) k= state(x, s?) according to the
semantics given in Definition 17. Thus (&’,¢’,v") | Ci(x) A state(x, s?).

e Assume (S,¢,v) € Z(c,py such that (S,¢,v) E Ci(x). Then S=(0,... ,C;.s ={v(x)},...,0)
and using the operational semantics we obtain

delete(Cy,x): (S,¢,v) = (&,¢,v)
such that & = ( CF,...,CE\ (v(x)),...,C [T, ..., I Yy =(0,...,0).

m

Then (&',¢,v) E emp.
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e The proof of the validity for the axioms connect and disconnect follows analogu-
ously to the proof of the validity of new and delete.

e Assume (S,¢,v) € X,y such that (S,¢,v) E P. Then
skip: (G,¢,v) = (G,¢,v),
hence (S, ¢,v) E P and the axiom is valid.
It follows that the small axioms are valid. O

Most of the inference rules are standard and inspired by the rules for abstract separation
logic given in [COYO07]. Only the rules for with ¢ do, sequential composition and the frame
rule need special attention.

Definition 30 (Basic Constructs). The basic constructs are

{PAp} O}
{P}wheng¢dot {Q},

(when ¢ do)

{v1,...,yi PAYLx1 /Y1, xifyil = true } £ { Q')
{P}withydot¢{Q}
where {x1,...,x;} € fv(y) and y1,...,y, €V,

(with ¢ do)

{P} & (P} { P’} havoc { 0"} {0} 6 {Q)
{P} o1 { Q)

{(PYl {0} (P} 6L {0Q}
{(PYlo+6i {0}

G)

(+)

{P}¢{P}  {P}havoc{P}
{PYC (P},

)

where P,P',Q,Q’, ¢,y € SLVBQIP(C, I) are formulae, where ¢ is downward closed, and €, £y, €
L{C,I) are programs.

Theorem 3. The basic constructs given in Definition 30 are sound.

Proof. We prove the soundness of the inference rules one by one.

e Let(S,¢,v) € Xy be a BIP configuration such that (S, ¢,v) E P and suppose that the
premise { PA¢ } € { O} is true. If (S,¢,v) E ¢ then it follows from the operational
semantics of the programming language (given in Definition 23) that

when ¢ do £: (S,¢,v) = (&',¢",V),
where € : (S,¢,v) = (&,¢",V).

Since (S,¢,v) E P A ¢, we derive from the premise that (&’,¢",v') E Q.
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e Let (S,¢,v) € Xy be a BIP configuration such that (S,¢,v) i P and we assume that
the premise { Ayy,...,yi. PAY[x1/y1,...,xi/yil=true } € { O } holds. Then we use
the operational semantics and obtain

wheny do ¢: (S,5,v) = (&',¢",v")
if there exists a v/ = v[x] « uy,...,x; < u;] for fv(y¥) = {xy,...,x;} and some elements
uy,...,u; € U such that (S,¢,v') E PAy*true and €: (S,¢,v) = (&,¢",v").
It follows via the premise that (&’,¢’,v") E Q.

e Assume (S,¢,v) € ¢y such that (S,¢,v) E P and we presume that the premises
{P} & { P}, {P }havoc { Q' }and { Q' } £; { Q } hold. From the operational
semantics we obtain

o361 : (S,6,v) = (€7,5"",v")
with £o : (S,¢,v) = (&',¢",V), havoc : (€,¢",V) = (€',¢",V)
and fl :(6/,§/’,V’) s (ell’g/ll’v//).

Since (S, ¢,v) E P, we derive (&',¢",V') E P/, furthermore (&',¢”,v)E Q" and (&”,¢" V") E
Q from the premises. Thus the rule is sound.

e Assume (G,¢,v) € X such that (S,¢,v) E P. We suppose that the premises { P} £; { O}
hold for i = 0, 1. It follows from the operational semantics that
bo+t1:(S,6,v) = (E,¢"Y)
if ¢ : (S,¢,v) = (&,¢",v) forani€{0,1)}

and, since { P} ¢; { Q }, we know that (&’,¢’,v") E Q and the rule is sound.

e Assume (S,¢,v) € Xy such that (S,¢,v) E P. We suppose that the premises { P} £ { P}
and { P} havoc { P } hold and we show by natural induction that { P} £" { P } follows
for any n € Nj.

— Base Case: Suppose n =0, then (S,¢,v) E P.
— Induction Hypothesis: { P} £ { P} holds for some arbitrary but fixed n € Nj.

— Induction Step: Assume that { P} £* { P } holds. We know from the operational
semantics that

~rn

" :(8,6,v) = (7,6 V")
if £:(S,¢,v) = (€,¢",V), havoc : (€',¢",V') = (&',¢",V)
and g* . (g/’gl/’vl) — (6”,5‘”,,]/”),
and derive from the premises that (&’,¢’,v') E P, (&’,¢”,v’) E P and from the
induction hypothesis we obtain (&”,¢”,v"") = P.

Hence the rule follows by natural induction.
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It follows that the basic constructs are sound. O

Whereas the basic constructs state partial correctness through analysing the structure of a
program ¢, the following rules study the structure of the pre- and postconditions in the Hoare
triples. This includes the conjunction and intersection of conditions and implications.

Definition 31 (Structural Rules). The structural rules are

e the rules for conjunction and disjunction:

{(Pi}yt{Qi}aliel W) (P} €{Q;i}alliel
{Vier Pi} € {Vies Oi } { Nier Pi } € { Nies Qi }

(n)

e and the rule of consequence:

Pcp (PYL{Q]} oc¢

Theorem 4. The rules for conjunction and disjunction and the rule of consequence given
in Definition 31 are sound.

Proof. o Let (S,¢,v) € ¢y such that (S,¢,v) = Vg Pi. Then (S,¢,v) = P; for some
i € I and we derive from the premises that

:(S,6,v)— (& ,¢,V)
and (&',¢",v")  Q;. Hence (€',¢" V") E Vies Oi-

e The rule for disjunction and the rule of consequence follow similarly.
O

The frame rule is also a structural rule, but since its definition and the proof of its sound-
ness require multiple pages, we specify it separately. First, we define a subset of the pro-
gramming language £(C, ) that contains all the programs in the language £(C, /) that omit
with ¢ do, sequential composition and the Kleene star.

Definition 32 (Subset of the Programming Language). We define the subset Lx{(C,I) C
L{C,I) of the programming language by

¢ :=new(C;,x) | delete(Cj,x) | connect(/j,x1,...,Xq(j)) |
disconnect(/j,xi,...,Xoj)) | skip | when¢ do ¢ | t+,

where (,0' € Lx(C,I), C;eC for 1 <i<n, I;j€l for 1 <j<m, x,x1,...Xq) €V and
¢ € SLE®(C.I) is downward closed.

We define the frame rule on the programs in the subset Lx(C,I).

Definition 33 (Frame Rule). The frame rule is
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{P1€{Q}
{P+xF}{£{QxF}

where P,Q,F € SL%IP(C, I) are formulae and € € Lx{C,I) such that Modifies({) Nfv(F) =0,
hence the program { does not modify any free variable in F.

(*)

The frame rule can only be applied for atomic programs ¢ € Lx(C,I) and a frame that is
not altered by the program £. We may apply the frame rule (and the axiom for connect) in
the following proof (compare with Figure 4.2):

{ emp } connect(TAKE_LEFT,y, x) { TAKE_LEFT(y, X) }
{ FORK(xX) * PHILO(Y) } connect(TAKE_LEFT,Y, x) { FORK(X) * PHILO(Y) * TAKE_LEFT(Y, X) }.

(*)
But it may not be applied to prove the Hoare triple

{ chain(fp, f,) }

new(PHILO, p); connect(TAKE_RIGHT, p, fo); new(FORK, f)
{ FORK( f) * PHILO(p) * TAKE_LEFT(p, fo) * chain(fy, f,,) }

(see Figure 3.2), because interactions could fire in the frame (which is the chain(fp, f;;)) in
between the composition of the commands.

5.2. Relaxing Locality

The frame rule originates from separation logic on heaps and uses the locality property to
simplify the verification of programs on heaps. It states that if a heap is a model of some
assertion P and a program alters the cells, then the same program would only alter a special
part of a heap that is a model of P * F, namely the part that models P (assuming that we
use the theory given in [IO01], where all the programs are local). The rule was generalized
in [COYO07] for abstract separation logic and proven to be sound and complete for local
actions on separation algebras (see Definition 4 for the definition of locality).

In our case, we cannot guarantee that all programs ¢ € L(C,I) are local since the action
havoc and the atomic actions new and with ¢ do are non-local. The action havoc cannot be
adapted, hence the frame rule is restricted such that it only applies to programs that do not
trigger havoc implicitly. A restricted version of with ¢ do is the action when ¢ do, where ¢
is restricted to downward closed formulae. Hence we exclude the first action. Furthermore,
we generalize the notion of locality to X-locality and show that the action new is X-local.

In this section, we show which atomic actions are local, we define X-locality and prove
that most of the actions are X-local, and finally, we show the soundness of the frame rule
defined in Definition 33. First, we show the locality of some of the actions.

Lemma 1. The atomic actions delete, connect, disconnect, skip, and when ¢ do ¢
given in Definition 23 are local actions, if € € L{C,I) is a local action.

Proof. We start by proving the locality of the action delete: Let (Sy,<50,v0),(S1,51,v1) €
2(c,1y be two BIP configurations such that (S, 50, vo) ® (S1,61,v1) is defined. Then vo = v,
and hence we can distinguish three cases for the action delete(C;, x):
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e Suppose vo(x) € CZ.EO. Then
[delete]l(Ci, x)((So,50,v0) ® (S1,51,v1)) = [delete](C;, x)((So,50,v0)) * {(S1,51, V1)),

since the result is a BIP configuration (S,¢,v), where S = ( Ce,...,CS,IIS,...,IS )

contains the elements of Sy and S; minus the element vy(x), ¢ = ¢p and v = v.
e Suppose vp(x) € Cl.sl. Then
[delete]l(Ci, x)((S0,50,v0) ® (S1,61,v1))
results in the same structure as in the first case, but

[delete]l(Ci, x)((S0,50,v0) * {(S1,51,v1)} = T*{(S1,61,v1)} = T,

since vo(x) ¢ Cie" and hence the operational semantics map (S, o, Vo) to the error
state. The subset relation holds, since p C T for every p € P(Z(c ).

e Suppose that vo(x) ¢ C?O U Cl.el, then both

[delete]|(Ci,x)(S0,50,v0) ® (S1,¢1, V) =T
and [delete]/(C;, x)((S0,50,v0)) =T

map (Sp,<0,v0) ® (51,51, v1) resp. (So,50,v0) to the error state. Hence

[delete]l(Ci, x)((S0,50,v0) ® (G1.61,v1)) = [delete](Ci, x)((So, 50, v0)) * {(S1,61,v1)}-

Thus delete is alocal action. The locality condition for the actions connect and disconnect
can be proven similarly. And the action skip is local, since

[skipl((So,50,v0) ® (S1,51,v1)) = [skip((So,50,v0)) * {(S1,51,v1)}

for any BIP configurations (So, 50, v0),(S1,51,v1) € Zc.py-

And last but not least, we assume that (Sg,$0,v0),(S1,51,v1) € Z(c,1y are BIP configu-
rations such that (Sg,¢0,v0) ® (S1,61,v1) is defined. We analyze two cases for the action
when ¢ do ¢:

e Assume that (Sg,<0,Vv0) ® (S1,61,v1) E ¢, then (S,50,v0) E ¢, because ¢ is down-
ward closed. Hence

[when ¢ do £]((Z0,50,v0) ® (S1,51,v1)) = [£1((So,50,v0) ® (51,51, V1))
C [£1((S0,50,v0)) *{(S1,51,v1)} = [when ¢ do L] ((So,50,v0)) * {((S1,51,v1)}.

e Now we assume that (S, <0, vp) ® (51,51, Vv1) F ¢, but (Sp,50,v0) E ¢. Then it is

[when ¢ do £]((S0,50,v0) #(S1,61,v1)) =0 < [when ¢ do £]((So, 50, v0) *{(S1,61,v1)}-
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Hence the locality of the action when ¢ do ¢ follows. O

Most of the atomic actions are local, but the action new is an exception. This is due to the
non-deterministic choice of the element # € U that uniquely defines the new component.

Lemma 2. The atomic action new given in Definition 23 is non-local.

Proof. We show that the action new(Cj, x) is non-local by assuming that the locality condi-
tion holds and giving a counterexample.

Let (&%,¢,v) € E?C n be an empty BIP configuration and u € U an arbitrary but fixed el-
ement. Furthermore ¢(u,C;) # s? and v(x) # u. Then (S%,¢,v) e (S0 ¢,v) = (S0,¢,v) is

defined and
(&1, C) « 91, v[x < ul) € new(C;, x)((S%,5,v) (3, 6,v)) = new(C;, x)((E%, 5, v)).

But (&', 6[(u,C;) — s°1,v[x « u]) ¢ new(C;, )(S°,¢,v)) #{(&°,¢,)} = 0, since the concate-
nation via the operation * contains only elements, where ¢[(¢,C;) « s?] =¢gandv[x«—u]l=v
hold. This is not true by the definition of ¢ and v for any u € U and hence new is non-
local. O

We want to specify a relaxation of the locality condition that holds for the action new and
that allows us to prove the soundness of the frame rule.

The counterexample in the proof of Lemma 2 indicates the problem with the original lo-
cality condition — the concatenation via the operation * fails because new alters the total
functions ¢ and v. We bypass this by defining a lifted set, which contains all BIP config-
urations that differ from original BIP configurations only at certain fixed positions in the
functions ¢ and v. This lifted set will be used for the specification of X-locality in Defini-
tion 35.

Definition 34 (Lifted Set). Let X C VX C be a set of tuples (x,C;), V(X) ={x|(x,C;) € X} is
the set of variables used in X and P € P(X(c ) a set of BIP configurations. Then we define
the lift of P on the set X as

PTx ={(S,¢'V) (S5 €EP,
V' (y) =v(y) forall y € V\V(X)
and for all (u,C;) e UXC
if (u,Cy) # (V' (x),C)) for all (x,C;) € X, then ¢’ (u,C;) = ¢(u,Cy)}.
We give an abstract definition of X-locality first. If the definition of the lifted set is

adapted, then it can also be used in the store-heap model for the assignment x:=y, which is
not local but can be proven to be X-local for X ¢ V.

Definition 35 (X-Locality). Let X be a set such that the lift PTx of any set P € P(X) is
defined for a separation algebra . Then an action f :X — P(Z)" is X-local iff for all
00,01 € X such that o e o1 is defined, f(ogeo) C f(oo) *{o1}Tx.
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The sequential composition, non-deterministic choice, and iteration of X-local actions
on static systems (thus without implicit state changes) are again X-local actions. Look at
Appendix A for a proof.

The application of X-locality on BIP configurations leads to more insights. We can show
that a local action is also an X-local action for a certain X.

Lemma 3. Let [ :Zc 1y = P(Ec,ny) ' be a local action. Then f is also an 0-local action.

Proof. The action f is local, thus f(oge o) C f(oo) {01} = f(oo)*{o1}Te, since {o1}To=
{o1}. Hence f is @-local. |

Since we have shown that delete, connect, disconnect, skip, and when ¢ do are
local actions, they are also @-local actions. In Appendix A we show that when ¢ do ¢ is also
an X-local action if £ is X-local. Furthermore, new is an {(x, C;)}-local action.

Lemma 4. The action new given in Definition 21 is {(x,C;)}-local.

Proof. Let (S,50,v0),(S1,61,v1) € Z(c.1y be two BIP configurations such that (S, s, vo) ®
(31,¢1,v1) is defined. Then

new(C;, x)((S0,50,v0) ® (S1,51,v1))
={(G.6.9) | & =S¥ S Wiu}, v =volx — ul and ¢ = go[(u,C;) — 571, u g €V},
which equals

{(S.6.9) & = SoW{u, v =volx — ul and ¢ = 5o, C)) = 501, u ¢ €}
{(C1,61, vITix.c)
=new(C;, x)((S0,50,v0)) *{(S1,51, VI TixC)1

since the concatenation via the operation * is only possible if u ¢ C;.S]. Thus new(C;, x) is
{(x,Cy)}-1ocal. O

Now we can combine all of the previous results about locality and X-locality and prove
the soundness of the frame rule.

Theorem 5. The frame rule given in Definition 33 is sound.

Proof. We start by proving that the program ¢ is X-local for some set X ¢ VX C. Then we
use the X-locality to show the frame rule.

Since £ € Lx(C,I), we have to show that each of the atomic commands is X-local and fur-
thermore, that compositions via the non-deterministic choice + are X-local: The X-locality
of the atomic commands follows via Lemma 3, Lemma 4, and Lemma 15. Furthermore,
the composition of X-local programs via non-deterministic choice is again X-local, see
Lemma 13. Hence every program ¢ € Lx(C,I) is X-local for some minimal set X ¢ Vx C.

Suppose that (S,¢,v) € Xcpy is a BIP configuration such that there exist (Sp,sp,vp),
(SRr,SR,VR) € Z(C,1y With

(&,5,v) =(Sp,sp,vp) ® (SR,SR, VR),
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(Sp,sp,vp) E P and (Gg,¢r,vr) E R. It follows that (S,¢,v) E P*R. Furthermore we
assume that the premise { P } £ { Q } holds, hence [{](Sp,sp,vp) E Q. Then it follows from
the X-locality of the program ¢ that

[£1((Sp,sp,vP) ® (SR, 5R,VR)) € [E1((SP, 5P, vP)) *{(GR, SR VR TX -
——————————
EQ

Without loss of generality, we can assume that X is chosen as in Lemma 14. Then it
follows that V(X) € Modifies(£). Furthermore, we require that Modifies({) N fv(R) = 0,
hence V(X)Nfv(R) = 0. It follows that {(Sg,sr, vr)}TxF R and finally

[£1((Sp,sp,vp) ® (SR, 5R,VR)) € [EN1((Sp, 5P, vP)) *{(SR,. SR, VRI}TX E O *R.
O R

Hence we have proven the soundness of the frame rule. O

5.3. Havoc Rules

In this section, we give rules for reasoning about executing interactions on BIP configura-
tions (respectively the state changes that occur if interactions are triggered) and prove their
soundness.

Throughout the whole section, we assume that a signature (C,[) is fixed. Furthermore,
the universe U, the set of variables V, and the set of predicate symbols P are countably
infinite sets.

In previous chapters, we have looked at concrete semantics for the state transitions on BIP
configurations. An interaction /;(x1,...,X.(j)) is called closed if the matching components
for each variable x;, 1 <i < a(j), are also specified (and no component is missing). In
concrete semantics, an interaction can only fire if it is closed and some other conditions
hold. Contrarily, in the open semantics, an interaction can also fire if it is not closed (hence
if it is open). In both semantics, an interaction can only fire if it is enabled, hence if all
the connected components are in a state such that there exists a transition (specified by the
behavior of the component via the component type) from the current state labeled by the port
where the interaction is connected. The only difference between the upcoming definition of
open semantics and the previous definition for closed semantics (see Definition 12) is the
specification whether the interaction must be closed or not. The other conditions are equal.

Definition 36 (Open Semantics). Let X = {I;(x1,...,Xaj)) | Ij €1, X1,...,Xa(j) € V} be the

set of all interaction atoms. Then we define a transition function ~,: Xic,ry XX = Z(C.1y,
where it is

(S,¢",v), if and only if
1. a:=((x1),...,v(xa(j))) € I} is an interaction,

2. ais enabledin (S,g,v),
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3. ¢ =¢l(u,Cr) « s |up € a,uy € CG,Ij? € Py] is the state snapshot, where s, is defined
in Definition 11.

. Lj(X15eensXa(j)
We call such a transition (S,g,v) ! ~, ! (S,¢”,v) a havoc step.

The notation is extended to "
(67 §9 V) ’\»0 (67 g,’ V)

for a word w € Z* if w = wy-...-w, for some n € Ny, wy,...,w, € Z, and (S,g,v) «vgo
(S,¢1,v) /\vgzo '\vgz, (3,¢n,v) = (S,¢’,v). If an interaction A € X does not fulfill the con-
ditions specified in the previous definition for a BIP configuration (S,¢,v) € Z.c ), then it
cannot be executed, since no transition exists. Note that neither the BIP system & nor the
variable mapping v of a BIP configuration (S, ,v) is touched. The havoc steps only change
the state snapshot of a BIP configuration.

We use a different semantic for the havoc rules than the concrete semantics (which repre-
sents the “real” behavior in BIP frameworks), because local reasoning is simpler with open
semantics. The key point is the composition rule (>) that is defined at the end of this section.
Figure 5.1 illustrates this difference using the dining philosophers problem.

e "
PHILO

S
&
X u PUT_DOWN
o0
FORK

Figure 5.1.: A BIP configuration where the interaction PUT_DOWN(y, z, X) is not complete. It
cannot fire in closed semantics, but could fire if we consider open semantics.

We specify the sets of possible words by using language expressions. Those are expres-
sions that resemble regular expressions and represent a language (hence a set of words). If
not stated otherwise, the symbol Z represents an arbitrary set that works as an alphabet for
a language.

Definition 37 (Language Expression). A language expression L over the alphabet X is a
term generated inductively by the following syntax:

Li=e|A|L-Ly| LiULy | L] | Livss, 5, Lo,

where € denotes the empty word, A€ X, L and L, are language expressions and £1,Zy C Z.
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We specify the support alphabet of a language expression, which contains all the symbols
that appear in words of the corresponding language.

Definition 38 (Support Alphabet). The support alphabet of a language expression L is the
set supp(L), defined inductively as:

supp(e) =0  supp(A) = {A} supp(L") = supp(L)
supp(Lq - Lp) = supp(Li U L) = supp(Li »<g, 5, L») = supp(Li) U supp(Lp).

Language expressions represent sets of words that we call languages. The connection
between a language expression and the language is given in the next definition. Most valu-
ations should not be unexpected, only the valuation of »<5, 5, might deserve a closer look,
since it defines an interleaving of languages.

Definition 39 (Valuation of Language Expressions). For a language expression L we define
its valuation [[L] inductively as:

[el ={e} [AN={A} [Li-Lo]l ={w1r w2 |w;e L] forie{l,2}}
[Li VLD =L TVILD L] = U [l

neNy
[Li s, 5, Lo]l = {we (X1 UXo)" | wls,€ L; fori € {1,2}},

where € denotes the empty word, A€ X, L1 and L, are language expressions and X1,%, C Z.
Furthermore, L" is the concatenation of the language expression L via (-) n times and for
every word w € ¥ and any subset of the alphabet ¥’ C X, we denote by w]s the projection
of the word to the symbols in the alphabet, hence the word obtained by removing all symbols
inT\X.

To reason about the state transitions via proof rules, we define again a restricted family
of triples that resemble Hoare triples. Here, we call them havoc triples, the pre- and post-
conditions are once more specified via (C, I)-formulae but, in contrast to the Hoare triples
that we used for the reconfiguration rules, this time the middle entry describes possible state
changes via language expressions.

Definition 40 (Havoc Triples). Let P and Q be finite disjunctions of symbolic configurations
over a signature {(C,I) and L be a language expression over an alphabet X for some injective
substitution 6. The triple { P} L { Q } stands for the statement:

for all BIP configurations (S,¢,v),(S,5",v) € Zc.py,
if (.6 [ P and (S,6,v)~5, (S.¢'.v) for some w € [L], then (&.¢.v) [ Q.

In the rest of this chapter, we give proof rules that use havoc triples and then prove their
soundness. The rules are divided into four groups, where the first group makes use of the
structure of the language expression to reason about the triple, the second group analyzes
the language (hence the set of words), and the third group reasons via analyzing the pre-
and postconditions of a triple. Lastly, we define a composition rule () that transfers the
concept of locality to the reasoning about firing interactions on BIP configurations.

We start by giving the rules of the first group.
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Definition 41 (Proof Rules on the Structure of the Language Expression). The following
proof rules use the structure of the language expression L to analyze the havoc triples:

I*
. J . ..
for each x; € B, there exist si, s,’( € Si such that sy ~>p s,’( is a transition for Cy,
where B :={x;,...,X;,} € {x1,...,Xq(j)} as given in Definition 36

{ Axpe Ck(xi) A state(xg, sk) } 1i(x1, - Xa(j) { A\xen Cr(xp) A state(xg, ;) }

(A)

{(PYLi {0} {Q} L {R}

(Ple(P) © (P) Li-Ls (R ¢
(PILIQ)I PVLIQ) (PIL(P)
(P LiUL (R) (PIL (P

Here, the formulae P, Q,R are symbolic configurations for the signature (C,I) and L,Ly,L,
are language expressions over an alphabet X.

Note that the composition of two language expressions via the »-operator is missing.
This is due to the fact that this operator is used in the composition rule (><), which is more
complex (see Definition 47 for the corresponding proof rule).

Lemma 5 (Soundness of the Structural Proof Rules). The structural proof rules given in
Definition 41 are sound.

Proof. We prove the soundness of rules given in Definition 41 and therefore assume that
(S,6,v), (S,6",v),(3,61,v),(S,62,v) € X,y are BIP configurations.

e Suppose that (S,¢,v) E A,,ep Ck(xk) A state(x, si), where the set B is defined in the
rule (A). Furthermore, we assume that

(69 ga V) ’\E;O (69 g” V)

for a word w € [1(x1,...,Xq(j))] = {I;(x1,...,Xa())} in the language.

Since there is only one possible word, it follows via the definition of the transition
function ~»,, that (S,¢’,v) E A xpeB Ck(xk) A state(x, s;() (see Definition 36). Hence
the rule (A) is sound.

e Suppose now that (S,¢,v) E P and w € [e]. Then

~ € ~
(\9, 5‘9 V) ~0 (\9, 5‘9 V)9

the empty word does not change any states and (S,¢,v) | P, hence the rule (e) is
sound.

e Let(S,¢6,v) E Pand the premises { P} L1 { Q}and { Q} L, { R} hold. Furthermore
let we [Ly- L] be a word. Then w is a concatenation w = wy - wp, where w; € [L;]],
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i=1,2.1If
(B,6.7) "3 (B,51,¥) 3y (B,62,v) thenalso (B,6,v)~>, (S,62.v)

and it follows via the premises that (S,¢1,v) E Q and (S, ¢»,v) E R. Hence the rule
() is sound.

For the proof of the rule (U), we have a word w € [L; U L,], hence w € [L;]], for i = 1 or
i = 2. Then the soundness of the rule follows via the premises. And for the proof of the rule
("), we analyze a word w € [L*]. There exists an element n € Ny such that w € [L"] and
hence we can apply the rule (-) n times to prove the soundness of the rule (*). O

A disabled interaction is an interaction atom such that one of the corresponding compo-
nents is in a state where there exists no transition from the state labeled by the port where the
interaction is connected. Whether or not an interaction is disabled depends on the respective
BIP configuration.

Definition 42 (Disabled Interaction 1). Given a symbolic configuration P and an interaction
atom 1j(x1,...,Xqj)), we write { P} T1j(x1,...,Xq)) for the statement:

Let (S,¢,v) € X(c1y be any BIP configuration with (&,s,v) | P. Then there
exists an element xi € {x1,...,Xq(j)} such that state(xy, sy) and there exists no
Ik
o S ’
transition sk ~>k Sy, Sk, S;, € Sk.

For a set Y € X of interaction atoms, { P } 1Y’ stands for { P } T A for each A€ X’.

In Figure 5.1 the interaction TAKE_LEFT(y, X) is disabled because there exists no transition
from the state EATING labeled by Take_LEFT! for the philosopher x. Now we specify proof
rules that analyze the sets of words.

Definition 43 (Proof Rules on the Language Set). The following proof rules use subset
relations for the language [ L] to analyze the havoc triples:

{(PYLi{Q} (L2 S OLi]

(PYL (0] ©
{P}tA 1) {P}L{Q} {Qo}1tA [L] is prefix-closed ()
{P}A{false} * {P}stupp(L),ﬂﬂ* {0} =
{PYL{Q} A ¢ supp(L) (supp)

{(P+A}L{Q+A)

The formulae P and Q are symbolic configurations for a signature (C,I), A € X is an inter-
action atom and L, Ly, L, are language expressions over the alphabet X.
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The rule (C) states that if a havoc triple is valid for a language expression L; then it
is also valid for every language expression whose language is a subset of the language of
L. The postcondition of a havoc triple whose language contains disabled interactions in
each word is false (see rule (1,)). Furthermore, rule (f.«) states that if we have a triple
{ P} L {Q}then we can interweave the words in [L] with any words consisting of disabled
interactions and the pre- and postcondition remain the same. Last but not least, the pre- and
postconditions of a havoc triple can be extended by any interaction atoms that are not in the
support of the language expression. We proceed by showing the soundness of the rules.

Lemma 6 (Soundness of Proof Rules on the Language Set). The proof rules given in Defi-
nition 43 are sound.

Proof. Let (S,¢,v),(S,¢’,v) € Z,y be BIP configurations.

e Let(S,¢,v) E P and we assume that the premises hold. Furthermore w € [L,]] C [L;]
is a word such that "
(6, g,V) ’\’)0 (6, g”v)'

Since w € [L1]), it follows that (S,¢’,v) E Q and hence via the premise that the rule
(©) is sound.

e Let(S,6,v) E P and we suppose that { P } 7 A for an interaction atom /;(x1, ..., Xo(j)) =
A € 2. Definition 42 states that the interaction cannot fire, hence one or more of the
conditions given in Definition 36 is not fulfilled and there exists no transition from
(S,¢,v) via A. Hence the rule (7)) is sound.

e Let(S,6,v) E P and we assume that the premises hold. Furthermore, w € [ L »<gupp(2), 7
A*] is a word, where wlsuppz)€ [L] and wlz€ [A*].

1. Assume that w| #= €. Then (S,¢,v) «KG (S,¢’,v) and it follows via the premise
that (3,¢",v) E Q.

2. Now assume that w = u-A-v for u € supp(L)* and v € Z*. It is w lgupp)=
u-v]suppz) and since [L] is prefix-closed, we obtain u € [L]. Then (S,¢,v) «'ﬁo
(S,¢’,v) holds, where (S,¢’,v) E Q because of the premise. But the interaction
atom A is disabled for the BIP configuration (S,¢’,v) and hence the execution
of A is not possible.

If the execution of a word is possible, then the resulting BIP configuration (S,¢’,v)
models Q, and hence the rule (f..) is sound.

o Let (Sp,¢,v) @ (S4,¢,v) E P+ A for an interaction atom A € X, where (Sp,s,V),
(S4,6,v) € X1y, and A ¢ supp(L). We suppose that the premise { P} L { Q } holds.
Let w € [L] be a word such that there exists a transition

w ~ ~
(CP.5,v) 0 (Ca,6, V)~ (Cp,¢",v) 0 (Ca,¢",v).
Then there exists a transition (Sp, ¢, V) ,Jf,'o (Sp,s’,v), because A ¢ [L] and hence the

interaction A is not triggered by the word w. Thus (Sp,¢’,v) E Q and (Sp,¢’,v) e
(S4,5",v) E Q*A and the proof rule is sound.
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Hence the four proof rules are sound. O

Similar to the reconfiguration rules, there exist a rule of consequence (c) and a rule for
disjunction (V). Both rules analyze the pre- and postcondition to reason about the validity
of a havoc triple. We also derive rules for the unfolding (and folding) of predicate symbols,
which can be seen as special cases of the rule of consequence and the rule for disjunction.

Definition 44 (Proof Rules for Predicates, Disjunction, and Consequence). The rule of con-
sequence and the rule for disjunction are:

PEP {PPYL{Q) 0'kFQ
{P}L{QO}

()
{tPLion)

(VPO L VL0

The following proof rules unfold resp. fold predicate symbols:

{P*¢} L { Q }forallA(tl,...,t[Y(A)) “—R ¢
{PxA(t,....taa)) } L{ O}

(Iw)

{P}L{Qx*¢} Aty taa) <R &
{(P}L{Q*A(t1,....1qn)) )

(ru)

{PxA(t,....ta) } L{ O} A(t1,. . laa) <R
{Px¢p} L{Q}

ar)

{P}LA{Q*A(1,....lan) } for all A(11,...,la@n) g ¢i 1 i<k

: (xf)
(PYLIVE Q%)

Here, P,P;,Q,Q;,¢ are (C,I)-formulae, 1 <i <k, Lis alanguage expression, A€ P is a
predicate symbol, t1,...,tqa) € VUC are terms.

Note that we often suppress the premise A(f1,...,%,4)) < ¢ in the examples, since this
follows directly from the rules R and can be easily reconstructed. We show the soundness
of the rules.

Lemma 7 (Proof Rules for Predicates, Disjunction, and Consequence). The proof rules
given in Definition 44 are sound.

Proof. Let (S,¢,v),(S,¢”,v) € X(c.y be BIP configurations. We prove the soundness of the
rules (¢) and (V) first.
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e Suppose that (S,¢,v) | P and the premises in the (¢) rule hold. Furthermore w € [L]
is a word. Then (G, ¢,v) E P/,

~ w ~
(b7 S‘, V) MO (b7 S",V)

and (S,¢’,v) E @’ (this follows via the premise). Furthermore (S,¢’,v) E Q and hence
the rule (¢) is sound.

e Suppose that (S,¢,v) = /!, P; and w € [L] is a word. We assume that the premises
in the (V) rule hold. Then (S,¢,v) E P;, (S,¢,v) «»wo (3,¢’,v) and (S,¢",v) E Q; for
some 1 <i<n. Hence (S,¢",v) E \V/!_, Q; and the rule (V) is sound.

We show the soundness of the rule (lu) via a prooftree using the rules (c) and (V):

{Px¢} L{Q}forall A(tq,...,144)) <R ¢
PiA(t1,. 5 ta) E VA, o) er o 9 {Vau.tanpro Pxo} L1Q)
{P*A(t1,....,t0a) } L{ O},
which is true because PxA(ty,.. ., lu@a) F Vaq,... foa)) g ¢ P holds.
The soundness of the rule (ru) follows via the rule of consequence (c), because Q * ¢ =
Q+A(t1,...,tua)) if A(t1,...,t04)) <x ¢. The same holds for the rule (If) (but here we use
the implication P+ ¢ = P*A(t1,...,tx4))). And last but not least let ¢1,...,¢; be formulae

such that A(f1,...,%y4)) <= ¢; holds for every 1 <i < k. Then we use the rule (c) and the
rule (V) to obtain the soundness of the rule (rf):

{P}L{ Q*A(tl,...,ta(A))} Q*A(l‘l,...,l‘a(A))l:Q*qﬁi foralll1 <i<k
{PYL{Qx¢;}foralll <i<k
X V)
{PYL{Vi,Q*¢il

Hence all the rules are sound. O

(V)

()

(©)

5.4. Frontier and Composition Rule

The rest of this chapter contains the composition rule (><) and preparation for this rule. The
idea is that if one sequence of interactions is triggered on one part of a distributed system
and another sequence is triggered on the other part, then the sequences can be interleaved to
a new sequence of interactions that are triggered on the whole system (if certain conditions
hold).

An exemplary application of such a rule would be the chain that is illustrated in Figure 3.2,
where it makes sense to reason about the seat®(fy, ) part and the chain(fi, f,) part sepa-
rately. Let us look at a smaller example to analyze the problem a bit further. Suppose that
we have two BIP configurations; the one given in Figure 5.1, which we call (&g, so, vg), and
the completion (S1,¢1,v1), given in Figure 5.2. If we want to reason about the two BIP con-
figurations separately, then the reasoning about the fork z would be quite limited, since there
is no interaction that can fire. On the composed BIP configuration (S, <o, vo) ¢ (S1,51,v1)
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Figure 5.2.: A BIP configuration that indicates the frontier to the BIP configuration in
Figure 5.1 by a dashed line. The frontier contains exactly one interaction
PUT_DOWN(Y, Z, X).

there are many possible sequences — there are even sequences that contain the interaction
TAKE_RIGHT(Y, z) multiple times, but if we look at (S1,¢1,v1) individually then we cannot
derive that. Hence we add all the interactions in (&g, 50, Vo) that connect components in
(31,¢51,v1) and call the added interactions a frontier. In this case, we add the interaction
PUT_DOWN(}, X, 7) and analyze the fork z and two interactions. The same happens on the other
side (we add the interaction TAKE_RIGHT(Y,z) as a frontier to the configuration (S, §o,v0))
and then we interweave the possible sequences to create new sequences.

The definition of the frontier is simple if we know that it is finite. But there are cases
where a straightforward definition yields an infinite frontier (and hence an infinite formula,
which we want to avoid). Hence we define an equivalence relation on the interactions in the
frontier and consider only representatives of the equivalence classes.

We start with the definition of the equivalence relation.

Definition 45 (Equivalence Class of Interaction Atoms). Let A :=1;(x1,..., X)) and B :=
I;(y1,...,Ya(j)) be two interaction atoms for I; € I. They are equivalent modulo a set I' of
component atoms iff for each 1 <i < a(j) either

1. x;j=y;and Ci(x;) €T for some component type C; € C that has the corresponding port
Ii. S Pi, or
J

2. {Ci(x),Ciy)}NT =0 for all component types C; € C that do not have the correspond-
ing port, hence where I;. ¢ P;.

We write A ~r B in this case.

Since =~r is a binary relation that is reflexive, symmetric, and transitive, it is indeed an
equivalence relation. The set X(C,I) := {Ij(x1,...,Xq(j)) | Ij € 1, X1,...,Xqo(j) € V} is infinite
even though the set of interaction types is finite. But the partition £(C,I)/ ~r is finite, if I"
is finite. We write [.]r as the unique representative of each equivalence class.

Lemma 8. If the set of component atoms T is finite, then the partition X(C,I)] ~r is also
finite.

Proof. Suppose that 2(C,I)/ ~r is infinite. Since the number of interaction types itself
is finite, it follows that there exists an interaction type /; € I such that there is an infinite
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number of equivalence classes for interaction atoms of the form ;(x1,...,xqe(j). We fix I;
as an interaction type until the end of the proof and look at the different equivalence classes.

Let X :={x; | Ci(x;) € '} €V be the set of all variables that are used in I'. The set X is
finite since T is finite. We analyze the set of tuples (X U {_})*"’, where the finite set X is
extended by another element _. This set is also finite and hence the set of tuples of arity
a(j) is finite.

The tuples can be used to describe the equivalence classes in £(C, )/ ~r in the following
way: A tuple (x1,...,X(j) represents the set

{Ij(yl,...,ya(j)ﬂyi:xi if x; € X, andin”V\Xifxiz_, for1 <i<a(x)}.

It follows directly from the definition of equivalence modulo a set I' (see Definition 45) that
all the interaction atoms in the same set are equivalent. Furthermore, the sets are pairwise
disjoint for distinct tuples xi,...,Xq(j). And since the set of tuples (XU (L)W is finite, the
set of equivalence classes for the interaction type /; is finite. Hence we have contradicted
the first assumption and the partition is finite. O

The equivalence relation is well-defined for our purposes since two equivalent interaction
atoms have the same effect on the states of the components. This is proven in the next
lemma.

Lemma 9. Let P be a symbolic BIP configuration, I' = T'y(P) the set of component atoms,
and A = 1j(x1,...,Xaj) and B :=1;(y1,...,Ya(j) interaction atoms in Ze(P). If (S,5,v),
(,50,v),(S,61,v) € Z(c,py and (S,5,v) E P, then

~ A ~ B . .
(8,6,v) ~, (S,60,v) and (S,5,v) ~, (S,51,v) implies go(v(x),C;) = ¢1(v(x),C)
for each component atom Ci(x) €T.

Before we prove the lemma, we need to justify why we can assume that a variable map-
ping v is injective: Suppose that P is a symbolic configuration and (S, ¢,v) € Xy a model
of P. Then we can assume that the restriction v}, py of the variable mapping v to the free
variables in P is injective. Otherwise, we could choose an arbitrary total order on the set of
variables and define a substitution 6 : fv(P) — V, where 6(x) = min{y € fv(P) | v(y) = v(x)}.
Then it is (S,¢,v) E P if and only if (S, ¢,v0) = P6.

Proof. Let Ci(x) €T" be a component atom. Throughout the proof, we use the definition of
the equivalence relation (Definition 45) frequently. There are two possible cases:

o Suppose that v(x) = v(x;) for some 1 <i < a(A). Since v is injective, it is v(x) = v(x;).
It is A ~r B, and hence there are again two cases:

— Itis x; = y; and the port Ij, € P; is specified by the component type C;. Since
there exist executions for the words A and B for the BIP configuration (S, ¢,v)
and the transition system described by C; is deterministic, there exists exactly

one transition v(x;, C;) ~> s; for a state 57 € S;. Now we know that ¢4(v(x;),C;) =
sa(v(yi),Ci) = s; for 57 € S;.
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— The other case it not possible, since C;(x) = Ci(x;), the sets {C;(x;),C;i(y;)} and T’
cannot be disjoint.

e Suppose now that v(x) ¢ {v(x1),...,V(xq4))}, then it follows that x & {x1,..., X))}
Furthermore x ¢ {y1,...,Ye(4)}: If we assume that x = y; for some 1 <k < a(A), then
Ci(yx) = Ci(x) and hence the sets {C;(xx), Ci(yx)} and I are not disjoint. Thus x; = yx
and v(x) = v(yx), which is a contradiction to the first assumption. Hence it follws that
XEW . Yaa)) thus v(x) € {v(y1),...,v(Yaa))} (since v is injective) and furthermore
s(v(%),Cy) = sa(v(x),Ci) = sg(v(x), Cy).

Hence the statement follows. O

Now we finally define the frontier of two symbolic configurations formally. Remember
that — intuitively — the frontier of the symbolic configuration P for the configuration Q
contains all the interaction atoms in Q that connect components defined in P (or rather their
equivalence classes, but we have shown in Lemma 9 that this makes no difference for our
purposes).

Definition 46. Given predicateless symbolic configurations P and Q and an injective sub-
stitution 6, we define 7:9(P, Q) =11 %+ %1, where

{1, ot} = {1, Xa()DITpp) [ (X150 05 Xa( ) € Z(O),
and Ci(x;) € Tg(P) Al € P, for some 1 <i < a(j)}.

Given finite disjunctions of symbolic configurations Py, k = 1,2, we define

Fo(P1.P2) := \[{Fy(p1.p2) | Pkl i piis a disjunct of ¢y, k=1,2).

Now we show that ¥,(P1, P2) is indeed always a finite formula and use that <—%l unfolds
all the predicate symbols until the result is a predicateless symbolic configuration.

Lemma 10. For any finite disjunctions of symbolic configurations Py, k = 1,2, and any
injective substitution 0, the set {F,(p1,p2) | Pk <—;’; bk, piis adisjunct of ¢y, k = 1,2} is
finite.

Proof. Let ¥,(p1,p2) = t1 %+ * 1y, be an element of the set, where p; is a disjunct of some
formula ¢; and p, a disjunct of some ¢,. For each 1 <i < m, (; stands for an equivalence
class [1j(x1,...,Xa())Irypy) for I € I and xy,...,Xq(j) € V, where I;(x1,...,Xq(j)) € Zo(¢2) C
29(P>) is an interaction atom in P, and there exists an element 1 < k < a(A) such that
Ci(xr) € T9(P1). The substitution 6 is injective, hence there exists exactly one variable
y € fv(P) Nfv(P;) such that (y) = xx. Since the set fv(P;) Ufv(P,) is finite (unfolding only
adds existentially quantified variables), its intersection is also finite. Hence there are finitely
many component atoms Cr(x;) such that there exists a corresponding interaction atom in
29(P>). Since the number of interaction types is finite and the number of such component
atoms is also finite, it follows that the number of possible equivalence classes of interaction
atoms in the frontier is also finite. Hence the set is finite. O
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The composition rule () aims to be an equivalent of the frame rule in the set of havoc
rules. If two languages hold on two different BIP configurations and the frontiers, then their
interleaved words should be valid for the composition of the configurations.

Definition 47 (Proof Rule for Composition). We define the proof rule

{ PixFy(Pi,P3i) } Li { Qi Fy(Pi P3=y) } i=1,2
{P1#Py} Livas; s, Lo { Q1% 02 },

(>
where

e 0 is an injective substitution,

o X ={lj(x1,...,Xa(j)) € Zo(P1 % Py) | Ck(xx) € Tg(P;) for some 1 <k < a(j)},

e L; is obtained from L; by replacing each interaction atom v € %; with its ~ryp,-
representative, namely [t]r,p,), and

o P,P>,01,0; are {C,I)-formulae and Li,L, are language expressions over the al-
phabet X.

Last but not least, we prove the soundness of the composition rule.
Lemma 11. The () rule is sound.

Let X €V X C be a set of variables, v a variable mapping and ¢,¢” two state snapshots.
We say that ¢’ agrees with ¢ over v(X) if ¢’(v(x), C;) = ¢(v(x),C;) for all (x,C;) € X.

Proof. We prove the soundness of the rule by analyzing the structure of a word in the lan-
guage [L >3, 5, L]

Let (S,¢,v) € X,y be a BIP configuration such that (€,¢,v) E Py * P,. We assume that
the premises hold and that w € [L; >, 5, L»] is a word such that

(3,6,v)~5, (S,¢,)

for a configuration (S,¢’,v) € X(cy. Then we can write w = viu vauy - - VpltyVpi1, Where
ur -ty =wls, € [L1] and vi---v,41 € (X2 \ Z1)*. Then there exists a sequence of configu-
rations (&,60,V),...,(S,6,,),(&,71,V),...,(&,T4s1,V) € Z(c,1y sSuch that

~ Vi ~ uj V2 ~ up Up ~ Vn+l
(€,60,V) ~ (B,71,V) ™ (6,61,V) ~ (S,12,V) 3 ...~ (S,60,V) ~0 (S, Tp11,V),

5.1)

where ¢ = ¢p and ¢’ = tn+ 1. Since (S, ¢,v) E Py * Py, there exist BIP structures S; and &,
such that S; e S, = S and (S;,¢,v) E P;, i =1,2. Hence (S;,¢,v) | ¢; for some predicateless
unfolding P; <—’7;l ¢; for i = 1,2. Let 6 be an injective substitution and consider the sets
Xi:={(x,C) | C(x) € Ty(¢;)}. Note that X; and X, are disjoint, since P; and P, may not
imply the exact same components.

Let Fj3 be the structure such that (F12,¢,v) E F,(P1, P2) for any state snapshot ¢. This is
well-defined since the frontier only contains interaction atoms. Moreover, it is easily seen
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that F, is defined solely by ‘7:9(P1 ,P>)and v. Let gl.l be the state snapshot that agrees with
¢; over v(X1) and with ¢ over v(V \ X)) for 1 <i <n. Moreover, let ii; be the sequence
obtained from u; by replacing every interaction atom ¢ € X; with its =4, )-representative
[tIry¢))- By Lemma 9, we obtain the following sequence of havoc steps:

iip

1oy 1oy B e 1
(S .F12,§05V) ~, (S .F12’§17V) Ny (B ‘Flz,gn,V),

where (S1,6},v) E ¢1, (F12.60,v) £ F(P1,P2) and ity iy . ..ii, € L;. To see that the above is
indeed a valid havoc sequence, it is enough to observe that v; does not change the state of any
component from C(x) with (x,C) € X), thus in Equation 5.1 the state snapshot 7;;; agrees
with ¢; over v(X) for 1 <i < n. By the premise, we obtain (S e Flz,g,ll,v) E Q1 %F,(P1,P2).
Hence (S, ,g,ll, v) |E Q1. By a symmetric construction, we obtain (Sg,gﬁ,v) E Q,, where the
sequence g‘f, ... ,g‘,% is obtained in a similar way as g‘%g}l Since ¢’ agrees with ¢! over
v(X;), fori=1,2, we get (5] @ S3,¢6”,v) E Q1 * 07, as required. O
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6. Reconfigurations on Token Rings

The token ring is a simple example for the usage of the DR-BIP framework (see [BBBS18]).
This chapter analyses if and how we can prove the (partial) correctness of some reconfigu-
ration programs on the token ring.

We start by specifying the signature for components and interactions in the token ring.
Then we define inductive predicates that describe valid token rings via chains of connected
components. Afterwards, we state reconfiguration programs for the deletion and addition of
a component in the token ring. Finally, we prove the partial correctness of the reconfigura-
tion programs.

The definition of the token ring that we use throughout this chapter is similar to the
definition of the dynamic token ring in [BBBS18]:

“A token ring consists of two or more identical components interconnected us-
ing uni-directional communication links according to a ring topology. A num-
ber of fokens are circulating within the ring. A component is busy when it holds
a token and idle otherwise.”

A busy component can pass the token through the outgoing link to another component only
if this other component is idle. Deviating from the definition in [BBBS18], we say that a
component may be deleted from the token ring if the resulting ring contains at least one
busy and one idle component. We call such a token ring a valid token ring, since it is
deadlock-free!. Generally, the components that enter the token ring have no token.

6.1. BIP Configurations, Predicates, and Programs

We start by defining the types of components and interactions in the token ring.

Definition 48 (Signature of the Token Ring). We define a signature {(C,I) with one compo-
nent type C and one interaction type I with arity 2.

The component type C = (P,S, s°,~>) is a tuple, where P = {I',I?}, S = {n, T} and the initial
state is s = u. Furthermore, the transitions are ~>= {(T,Il,H),(H, 12,T)}.

Here, the state H is short for hole and if a component is in state H, then we say that it is
idle. The state T is short for token and represents that a component has a token; we say that
the component is busy. A component can “receive” a token from another component, if the
interaction at port I fires, and “pass” a token, if the interaction at port ' fires.

'A valid token ring is deadlock-free since there exists at least one pair of a busy and an idle component that are
connected such that the busy component may pass the token to the idle component. Hence interactions may
fire and there is no deadlock. This can also be proven with the tool described in [BI20].
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Figure 6.1.: The state diagram describes the behavior of instances of the component type C.

A valid token ring is a token ring with at least one idle and one busy component. We
want to be able to check whether a BIP configuration models a valid token ring, hence we
give a formal definition using (inductive) predicates. First, we define a chain of components
chain(x, z,h,t), where h,t € Ny are natural numbers. We define the predicate inductively
and use pattern matching, while intelligently substituting the pattern 4 — 1 with the natural
number i — 1 € Ny if possible:

chain(x,z,1,1) « dy . C(x) = I(x,y) * C(y) = [(y,z) A state(x, H) A state(y, T),
chain(x,z,1,1) « 3y . C(x) = I(x,y) * C(y) % I(y,z) A state(x, T) A state(y, H),
chain(x, z,h,t) « y . C(x) = I(x,y) *chain(y,z,h — 1,) A state(x, H),
chain(x, z,h,t) « dy . C(x) = I(x,y) = chain(y, z, h,t — 1) A state(x, T).

Note that there exists no matching for chain(x,z,0,7) or chain(x,z,k,0) for any h,t € Ny,
since that ensures that each chain contains at least one busy and one idle component. Now
the definition of the valid token ring is straightforward:

token_ring(x) < 3h,t . chain(x, x, h,1). (6.1)

For illustration, we define a symbolic BIP configuration, which is a valid token ring.

Example 14. Let B be a symbolic BIP configuration defined as

B=3a,b,c,d.C(a)=C(b)*C(c)+C(d)
xI(a,b)«1(b,c)*I(c,d)+1(d,a)
A state(a,T) A state(b,H) A state(c, T) A state(d, T).

This symbolic BIP configuration is depicted in Figure 6.2 and is a valid token ring since

there exist at least one idle and one busy component. If the interaction I(a, b) fires then the
1

. . .. I .
component a changes its state via the transition T ~» H and the component b changes its state
2

. ... I . . .
via the transition H ~» 1. The interaction /(c,d) connects two components in state T and the
component d has no transition from state T with label /7, hence the interaction cannot fire.

We propose reconfiguration programs for the deletion and addition of components in the
token ring. For the addition of a component into the token ring we need to replace an
interaction with two new interactions and the component. No hole or token can “get lost”.
To simplify the proof of the program, we assume that we insert the component next to a
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Figure 6.2.: A valid token ring, where three components are in state T and one component is
in state H.

busy component.

Listing 6.1: New Component.

1 with C(x)*I(x,z) Astate(x,T) do
2 disconnect(I,x,z);

3 new(C,y);

4 connect(I,x,y);

5 connect(I,y,z)

For the deletion of a busy component, it needs to be ensured that the remaining chain has
at least one busy and one idle component. It is crucial to disconnect the interactions first
and to keep the component from passing the token to the next component because then the
remaining chain might not have any idle component.

Listing 6.2: Delete Component in State T.

1 with I(x,y)=C(y)*I(y,z) Astate(y,T) do
2 disconnect(I,y,z);

3 disconnect(I,x,y);

4 delete(C,y);

5 connect(I,x,z)

Example 15 (Order of the Deletion of Interactions). Assume that we want to delete the
component a in Figure 6.2. We could delete the interaction between d and a first and this
would be an atomic action. Afterwards, we would delete the interaction between a and
b, but in between those two interactions, some interactions could be triggered via havoc,
since we compose the two actions through sequential composition (see Definition 23). Only
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the interaction between components a and b may fire, and if it does fire, then component a
becomes idle and component b becomes busy. Hence there is no idle component unequal to
component a and the deletion of component a would not result in a valid token ring. Indeed
the new token ring would be in a deadlock since no interaction can fire (no token can be
“passed”). Hence we need to make sure that the components a and b are disconnected first.

For the deletion of an idle component, the order of the disconnection also matters. This
time, it is crucial to disconnect the incoming interaction first, because otherwise the remain-
ing chain may contain no busy component.

Listing 6.3: Delete Component in State H.

1 with I(x,y)*C(y)*I(y,2) Astate(y,n) do
disconnect(I,x,y);
disconnect(I,y,z);
delete(C,y);

connect(I,x,z)

[ L

For the proofs of the reconfiguration programs, we define some more predicates that
simplify the notation. We specify a ring token_ring" that contains at least two idle and
one busy component and a ring token_ring" that contains at least one idle and two busy
components:

token_ring"(x) « Ay, h,t . C(x) = I(x,y) * chain(y, x, h, t) A state(x, H),
token_ring"(x) « Ay, h,t . C(x) * I(x,y) = chain(y, x, h, ) A state(x,T).

Furthermore, we define a predicate chain™ that implies more general chains:

chain®(x, x,0,0) < emp,

chain®(x,z,1,0) « C(x) = I(x,z) A state(x, H),
chain®(x,z,0,1) « C(x) = I(x,z) A state(x, T),
chain®(x,z, h,t) <« chain(x, z, h,1).

6.2. Proofs of the Reconfiguration Programs

We start by proving the correctness of the reconfiguration programs for the addition of a
new component. We prove that the execution of the reconfiguration on a deadlock-free
token ring results again in a deadlock-free token ring.

Theorem 6. Let Pyey be the program given in Listing 6.1. Then the reconfiguration program
Prey is correct, meaning that

{ token_ring(a) } Ppey { da.token_ring(a) }.
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Proof. We apply the rule for sequential composition (given in Definition 30) first and obtain
the following proof sketch:

{ token_ring(a) }

{3x,z. C(x)*I(x,z)*chain*(z,x,h,t—1) A state(x, T) }

with C(x)*I(x,z)Astate(x,T) do
disconnect(I,x,z)

{ C(x) * chain®(z, x,h,t — 1) A state(x, T) }

havoc

{ C(x)*chain®(z, x,h,t — 1) A state(x, T) }
new (C,y)

{ C(x)* C(y) = chain*(z, x, h,1 — 1) A state(x, T) A state(y, 1) }
havoc

{ C(x) * C(y) *chain*(z, x, h,t — 1) A state(x, T) A state(y, H) }
connect(I,y,z)

{ C(x)* C(y) = I(y,z) * chain™(z, x, h,t — 1) A state(x, T) A state(y, H) }
havoc

{ C(x)*C(y) = I(y,z) * chain*(z, x, h,t — 1) A state(x, T) A state(y, H) }
connect(I,x,y)

{ C(x)*I(x,y)* C(y)*I(y,z) * chain®(z, x, h,1 — 1) A state(x, T) A state(y,H) }

{ dx. token_ring(x) }

It is important to note that the sequential composition implies that an implicit havoc should
be considered in between two commands. We prove the small steps one by one:

e The implication token_ring(a) | Ax,z. C(x) = I(x,z) *chain*(z, x, h, — 1) A state(x, T) is
proven in Appendix B, Lemma 19.

e We prove the Hoare triple

{ C(x)* I(x,z) *chain*(z, x,h,t — 1) A state(x, T) }
with C(x)*I(x,z) A state(x,T) do disconnect(/, x,z)
{ C(x)*chain®(z, x, h,t — 1) A state(x,T) }

via the reconfiguration rules given in Section 5.1. We apply the rule for with ¢ do
first and afterwards the frame rule, which is applicable since disconnect(/,x,z) €
Lx(C,I) and the modified tuples of variables in the program do not intersect with the
tuples of variables in the frame:

{I(x,z) } disconnect(/,x,z) { emp }

(C0)*I(x,2) = chain zox hnt— D) Astate(rr) ]
disconnect(/,x,z)
{ C(x) *chain™(z, x, h,t — 1) A state(x,T) } (withy do)

{ C(x) * I(x,z) * chain*(z, x, h,t — 1) A state(x,T) }
with C(x)*I(x,z) A state(x,T) do disconnect(/, x,z)
{ C(x)*chain®(z, x, h,t — 1) A state(x,T) }.
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e It is C(x) = chain®(z, x,h,t — 1) A state(x, T) = chain®(z, x, i, 1), where chain® is defined

in Section B.2. Furthermore, it is shown in Theorem 9 that chain®(z, x, 4, 1) is invariant
under havoc. Hence the following Hoare triple is valid:

{ C(x) *chain®(z, x, h,t — 1) A state(x, T) }
havoc
{ C(x)*chain®(z, x, h,t — 1) A state(x,T) }.

The next Hoare triple follows via the frame rule and the axiom for the addition of new
components:

{emp } new(C,y) {C(y) }
{ C(x) = chain*(z, x, h,t — 1) A state(x,T) }
new(C,y)
{ C(x)* C(y) *chain®(z, x, h,t — 1) A state(x, T) A state(y,H) }.

()

This havoc triple follows with

C(x)x C(y) *chain®(z, x,h,1 — 1) A state(x, T) A state(z, H)
= chain®(z, x, 1, 1) * C(y).

We set . = Xg(chain®(z, x, h, 1)) for an injective substitution 6, X, = X(C(y)) = 0 and
X =% UZ,. Thenitis X* =X >y v 27 and we use the rules (>), (€) and Theorem 9
to derive

follows by Theorem 9 m ©

{ chain®(z, x,h,1) } Z { chain®(z, x,h,1) } {COy)} Z; {CO)}
{ chain®(z, x,h, 1) * C(y) } £7 vas, 5 X5 { chain®(z, x,h,1) x C(y) }
{ chain®(z, x,h,t) * C(y) } £* { chain®(z, x,h,1) « C(y) }.

This Hoare triple follows via the frame rule and the axiom for the connection of two
components via an interaction:

{ emp } connect(l,y,2) {1(y,2) }
{ C(x) * C(y) = chain*(z, x, h,t — 1) A state(x, T) A state(y,H) }
connect(/,y,z)
{ C(x)* C(y) = I(y,z) * chain®(z, x, h,t — 1) A state(x, T) A state(y, H) }.

()

The next havoc triple follows with

C(x)* C(y) * I(y,z) * chain®(z, x, h,t — 1) A state(x, T) A state(y, H)
= C(y) *I(y,z) * chain™(z, x, h, ) A state(y, H)
= chain®(y, x,h+ 1,1)

and Theorem 9.



e The proof of this Hoare triple is similar to the proof of the previous triple:

{ emp } connect(/,x,y) { I(x,y) }
{ C(x)*C(y) = I(y,z) * chain®(z, x, h,t — 1) A state(x,T) A state(y,H) }
connect(/, x,y)
{ C(x)*I(x,y) * C(y)* I(y,z) * chain®(z, x, h,t — 1) A state(x, T) A state(y, H) }.

(%)

e Last but not least we show the final implication by folding the chain two times:

C(x)*I(x,y) * C(y) * I(y,z) * chain*(z, x, h,t — 1) A state(x, T) A state(y, H)
E C(x)*I(x,y)*chain*(y, x,h+ 1, — 1) A state(x, T)
E chain(x, x,h+ 1,¢) E token_ring(x)  dx. token_ring(x),

sincet>1landh+1>1.
Hence we have proven the correctness of the program. O

Now we prove the correctness of the reconfiguration program for the deletion of a com-
ponent with a token. Similar to the previous proof, we show this next theorem by applying
the rule for sequential composition and then proving each of the premises one by one.

Theorem 7. Let Pgeleter be the program given in Listing 6.2. Then the reconfiguration
program Pgeleter is correct, meaning that

{ token_ring"(a) } Pgeleter { Ja.token_ring(a) }.

Proof. Again, we apply the rule for sequential composition first. To make the proof sketch
more readable, we define F :=[chain™(z, x,h—1,1) Astate(x,H)] V [chain™(z, x, h,t— 1) A state(x, T)]
for 1 < h,t € Ny and obtain:

{ token_ring” (a) }

{Ax,y,z. C(x)*=I(x,y)*C(y)=1(y,z) = F Astate(y, T) }

with I(x,y)*=C(y)=1(y,z) Astate(y,T) do
disconnect(I,y,z)

{ C(x) = I(x,y)*C(y) = F Astate(y,T) }
havoc

{ C(x)*I(x,y)* C(y)* F Astate(y, T) }
disconnect(I,x,y)

{ C(x)=C(y) = F Astate(y,T) }
havoc

{ C(x)*C(y) = F Astate(y,T) }
delete(C,y)

{Clx)=F}
havoc

{Co)=F}
connect(I,x,z)

{C(x) = I(x,2)* F }

{ dx. token_ring(x) }
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We prove each of the resulting Hoare triples individually:

e The implication token_ring"(a)  Ax,y,z. C(x) = I(x,y) * C(y) * [(y,2) * F Astate(y, T) is
proven in Appendix B, Lemma 20.

e We prove the Hoare triple

{ C(x) = I(x,y)* C(y) = I(y,z) * F Astate(y,T) }
with I(x,y)*C(y)*I(y,z) Astate(y,T) do disconnect(/,y,z)
{ C(x)# I(x,y) = C(y) * F Astate(y, 1) }

via the reconfiguration rules given in Section 5.1. We apply the rule for with y do first
and afterwards the frame rule, which is again applicable since disconnect(/,x,z) €
Lx(C,I) and the modified tuples of variables in the program do not intersect with the
tuples of variables in the frame:

{I(y,z) } disconnect(l,y,z) { emp }

{ C(x) % I(x,y) x C(y) * I(y,2) * F A state(y,T) } )
disconnect(l,y,z)
{ C(x)=I(x,y)* C(y) = F Astate(y,T) } (with ¥ do)

{ C(x) * I(x,y) « C(y) * I(y,2) = F Astate(y,T) }
with I(x,y) = C(y) = I(y,7) A state(y,T) do disconnect(l,y,z)
{ C(x) = I(x,y)*C(y) = F Astate(y,T) }.

e The havoc triple follows via

C(x) = I(x,y) Astate(y,T) = F

C(x) = I(x,y) A state(y, T) * ([chain®(z, x, h — 1,) A state(x, H)]
V [chain®(z, x, h,t — 1) A state(x, T)])

chain®(z,y,h,t) =« C(y) A state(y,T)

chain®(z,y,h,t+ 1)

and Theorem 9, since chain(z,y,h,t+ 1) is havoc invariant.

e The next Hoare triple follows via the frame rule and the axiom for the disconnection
of components:

{I(x,y) } disconnect(/,x,y) { emp }

{ C(x)=I(x,y)*C(y) = F Astate(y,T) } disconnect(/,x,y) { C(x)* C(y)* F Astate(y,T) }. )

¢ Analogous to the proof in Theorem 6 we can use the rules (><) and (¢€) and Theorem 9
to derive this havoc triple.

e This Hoare triple follows via the frame rule and the axioms for the deletion of com-
ponents:
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{ C(y) Astate(y,T) } delete(C,y) { emp }
{ C(x) = C(y)* F Astate(y,T) } delete(C,y) { C(x)*F }.

()
o This havoc triple follows again with Theorem 9 and since
C(x)* F = chain®(z, x, h, 1).

o This triple follows via the frame rule and the axioms for the connection of two com-
ponents via an interaction:

{emp } connect(l,x,2) { I(x,2)}
{ C(x) = F Astate(y,T) } connect(/,x,z) { C(x)*I(x,2)*F }.

()

e Last but not least the final implication holds, since 4,7 > 1 and
C(x)*I(x,z)*([chain®(z, x,h— 1,1) A state(x,H)] V [chain®(z, x, h,t — 1) A state(x, T)])
E chain*(x, x, h,t) | chain(x, x, h, ) |= token_ring(x) E Jx. token_ring(x).
Hence we have proven the Hoare triple correct. O

The reconfiguration program in Listing 6.3 should only get executed if the ring contains
at least two components in state 5. Hence the theorem is analogous, but we change the
precondition to a token ring with at least two components without tokens.

Theorem 8. Let Pyeleten be the program given in Listing 6.3. Then the reconfiguration
program given by Pgeleten iS correct, meaning that

{ token_ring"(a) } Pgeleten { Ja.token_ring(a) }.

The proof of this theorem is analogous to the proof of Theorem 7, only the states H and T
need to be exchanged and the order of the deletion of the interactions is turned around.
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7. Conclusion

In this work, we have used separation logic to verify the correctness of reconfiguration
programs on component-based distributed systems based on the BIP framework. For that
purpose, we have defined BIP configurations that model such systems and define the states
of the components. The interactions in the BIP configurations may execute and follow the
concrete semantics (where interactions can only fire if they are complete and enabled). Fur-
thermore, configurations can be composed via a cancellative operation . Then we specified
a separation logic on BIP that allows us to state the existence of components and interac-
tions, check the states of components, and define parametric systems via inductive predi-
cates. Moreover, we proposed a reconfiguration language that contains commands for the
creation and deletion of components and interactions, commands that check properties, and
commands for the composition of programs. In the following, we have specified Hoare
triples and gave axioms and reconfiguration rules for the reasoning about programs (while
disregarding the firing of interactions). Then we defined another set of axioms and the havoc
rules that are used for the reasoning about the execution of interactions in a BIP configu-
ration. We have proven the soundness of all defined inference rules. Lastly, we created
reconfiguration programs for the token ring, defined pre- and postconditions, and proved
the correctness of the programs via the inference rules.

The reconfiguration rules were mainly inspired by the inference rules for abstract sep-
aration logic in [COY(07]. However, we could not apply the abstract rules directly, since
they were given for local programs on static resources and our programs are not generally
local and the BIP configurations are concurrent resources (because interactions can fire non-
deterministically). Hence we needed to adapt the rules for sequential composition and the
Kleene star such that they consider the possible state changes through execution of inter-
actions. Furthermore, we generalized locality to X-locality and proved the frame rule for
X-local programs.

The havoc rules enable us to reason about the firing of interactions and provide a way
to prove Hoare triples for composed programs automatically. The rules use a completely
different approach than the one for concurrent separation logic given in [COY07]. Where
they construct traces with race checks fully syntactically and check the traces afterwards,
we prove the set of all possible words directly via the inference rules.

We conclude that the adaption of the inference rules in abstract separation logic leads to a
restriction of the frame rule that limits its application to atomic programs. In order to enable
local reasoning for arbitrary programs, we propose the havoc rules. Amongst others, they
contain the composition rule (><) that allows the local reasoning on concurrent BIP config-
urations (without the execution of commands). By combining the two sets of rules, we are
able to reason locally on composed reconfiguration programs. We have successfully proven
the correctness of reconfiguration programs on token rings of arbitrary size. The verifica-
tion of the correctness of reconfiguration programs on other parametric systems should be
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similar.

For future work, it would be interesting to verify the correctness of reconfiguration pro-
grams for systems that are more complex than a token ring and we have already started by
modeling the dining philosophers problem and proving the correctness of a reconfiguration
program. Furthermore, we would like to prove the completeness of the inference rules and
automatize the proofs.
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A. X-Locality

Here, we give a few lemmata that are used in Section 5.2 or are interesting additional state-
ments. The first statement analyzes the operation that lifts sets.

Lemma 12. Let X,Y C VX C be sets and P € P(Zc1y) a set of BIP configurations. Then

(PTx)Ty = PTxur
and PTx UPTy C PTxuy -

Proof. (PTx)TyC PTxuy: Each element (S,¢,v) € (PTx) Ty differs on V(Y) in v and on
{(v(x),C;) | (x,C;) € Y} in ¢ from a BIP configuration (&',¢’,v") € P1x, which itself differs
on V(X) in v and {(v'(x),C;) | (x,C;) € X} in ¢’ from a BIP configuration (&",¢”,v") € P.
Hence (G, ¢, v) differs from a BIP configuration (&”,¢”,v””) € P on V(XUY) in v and on
{(v(x),C) | (x,C)) e XU Y} ing and (S,¢,v) € PTxuy-
PTxur<S (PTx)Ty: The opposite direction follows analoguously.

PTx UPTyC PTxuy: Each element (S, ¢,v) € PTx differs on V(X) in v and on {(v(x),C;) |
(x,C;) € X} in ¢ from an element (&,5’,v") € P, thus it differs on at most V(X UY) in v and
on at most {v(x),C;) | (x,C;) € XUY}in ¢ from (&',¢’,V). |

We analyze how abstract X-locality carries over when using sequential composition f;g,
non-deterministic choice f + g and iteration f*. Here, the sequential composition is a simple
composition without havoc. Similarly, f* is an iteration without any havoc in between.

Lemma 13. Let f,g : X — PE)" be X- resp. Y-local, {o}Txuy= {o}1yTx and {c}1x
U{a}TyC {o}Txuy for any o € Z. Furthermore ; is a simple sequential composition without
any implicit state changes (the same holds for the Kleene star (-)*).

Then f;g and f+ g are X UY-local and f* is X-local.

Proof. Let 0,01 € X be BIP configurations such that the concatenation oy @ o1 is defined.
e We prove the X U Y-locality of f;g. Itis

figlogeor) = f(glopeoy))
C f(gloo)*{o1}1y) € f(g(oo) (o1} Ty Tx,

where we use the Y-locality of g, and the X-locality on every two elements o7, € g(0)
and o7 € {01}y with o @ o} defined. Since {o1}TyTx= {0"1}Txuy, the composition
f;gis XU Y-local.
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e We prove the X U Y-locality of f+g. Itis

f+glopeo) = f(opeo)Uglopeo)
C(foo)x{o1)Tx)U(gloo) *{o1}Ty) S (f +g)(o0) * {o1} Txuy -

The last step deserves a closer look: If o @ 0| € f(07¢) * {o1}Tx, then o € f(0p) S
(f +8)oo) = floo)Ugloo) and o] € {o1}TxC {01} Txuy. Analoguously for g and
hence the subset relation holds and f + g is X U Y-local.

e Last but not least we prove the X-locality of f*. Since

F=lUm=Pert e, where 1= fif5.
neNo n times

Hence f* is a composition via ; and + of the X-local action f and is thus X-local.

Thus f;g and f + g are X U Y-local actions and f™* is an X-local action. O

Since Lemma 12 shows that the equality and the subset-relation on the lifted sets hold for
BIP configurations, we can infer that the sequential composition, non-deterministic choice
and Kleene operator X-local actions are X-local actions, if no action havoc is implicitly
executed in between commands.

This is an interesting result, but in our case the composition of commands is not atomic,
hence the action havoc is implicitly executed and the sequential composition and the Kleene
operator of X-local actions are not X-local. Then again, the non-deterministic choice of two
X-local actions is X-local.

In the proof of the previous lemma, it is obvious that we can choose a minimal set Z C
VYV x C such that an action € € L{C,I) is Z-local. We show that the variables in the set Z are
a subset of the set of variables that are modified by the program ¢, if £ € Lx(C,I).

Lemma 14. Let ¢ € Lx(C,I) be a program. Then there exists a set Z C VX C such that € is
Z-local and V(Z) € Modifies(?).

Proof. We show this via a structural induction on the program ¢ € Lx(C, ) and look at the
different actions:

e Let £ = new(C;, x) for some component type C; € C and a variable x € V. Then we
have shown in Lemma 4 that the action is {(x, C;)}-local and V({(x,C;)}) = {x} C {x} =
Modifies(?).

e If £ equals delete(C;, x), connect(lj, x1,...,Xq(j)), disconnect(l, xi,...,Xq(j)) OF
skip, then ¢ is local, hence 0-local and V(0) = 0 = Modifies(¢).

e Let £ =when ¢ do ¢’ for some X-local program ¢’ € Lx(C,I), then ¢ is also X-local

and, since Modifies(when ¢ do ¢’) = Modifies(¢’), we derive from the induction hy-
pothesis that V(X) C Modifies(¢) = Modifies(when ¢ do ¢’).
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e If £ =1{y+{;, then Lemma 13 shows that £ is X U Y local, if £y is X-local and ¢;
is Y-local (X,Y € V x C). Furthermore we assume that V(X) C Modifies({y) and
V(Y) C Modifies(¢1). Then it follows that

V(X UY) = V(X)UV(Y) C Modifies(£y) UModifies(¢;) = Modifies(£).

Hence the statement is correct. O
Lastly, we show that the command when ¢ do is X-local.
Lemma 15. Let ¢ € Lx(C,I) be an X-local action. Then when ¢ do € is X-local.

Proof. Let (S0,50,v0),(S1,61,v1) € Z(c.1y be two BIP configurations such that (S, o, vo) ®
(31,¢61,v1) is defined. Then

[when ¢ do £]((So,50,v0) ® (51,61, V1))

={ [£1((S0,50,v0) ® (S1,51, V1) | (S,5, V)0 ¢ (S, 1 E ¢ }

Xl 1E1(S0,50,70) * (G s1, v DI Tx 1(S,6v)0 (S, 6,01 E ¢ )
¢ downward
S L0500+ (S1s1v)iTx 1S 6 )

={ [€1(Z0,50,v0) | (S,6, )0 E & } #{(S1,51,vITx
= [when ¢ do £](So, 50, v0) * {(S1,51,v1)} Tx,

hence when ¢ do ¢ is an X-local action. O
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B. Proofs for Token Ring Example

In this chapter, we prove a few statements that are necessary for the proofs in Chapter 6. In
the first section, we show a few implications of formulae in separation logic on BIP. And in
the second section, we show the invariance under havoc of the predicate chain®.

B.1. Implications

The following lemmata are used in the proofs of the correctness of the reconfiguration pro-
grams in Chapter 6.

Lemma 16. The implication
chain*(a,d, h,t) = Ix,z . chain®(a, x, hy, tp) * C(x) * I(x,z) * chain*(z,d, h1, 1) A state(x, T)

holds for some x,z €V and h,t e Ny, t > 1, and hy, h1,t9,t1 € No. Furthermore, it is ho+h; =
handty+t+1 =1t

Proof. The lemma is proven via natural induction on the sum of 4 and 7 for h+¢ > 1.

e Base Case: Let i+ =1, hence = 1 and & = 0. Then there exists only one possible
unfolding of the predicate chain®, namely

chain®(a,d,0,1) E C(a) = I(a,d) A state(a, T).
We obtain
C(a)=*I(a,d) Astate(a, 1) E chain®(a, a,0,0)* C(a) *I(a,d)*chain®(d,d, 0,0) Astate(a, T)
and the hypotheses follows.

¢ Induction Hypothesis: There exists an arbitrary but fixed n € Ny such that for any
h,t € Ng with h+¢=nand ¢ > 1 the implication holds.

e Induction Step: Suppose that h+7=n+1, h,7 € Ny and 7 > 1. Generally, there exist
two possible unfoldings for the predicate chain®.

— First Case: Suppose that

chain*(a,d, h,7) = 3b . C(a) * I(a,b) * chain*(b,d, h— 1,7) A state(a, 1),
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then the induction hypothesis is valid on chain*(b,d,iz —1,17), since h—1+f=n
and hence

3b . C(a) * I(a,b) »chain®(b,d,h — 1,7) A state(a, H)

E3b, x,z . C(a) = I(a,b) » chain® (b, x, hg, 71 ) * C(x) * I(x,z) * chain*(z,d, h1 , 1)
A state(a,H) A state(x, T)

E3dx,z. chain®(a, x,ho + 1,71) * C(x) * I(x,z) * chain*(z,d, by, 7)) A state(x, T)

and the hypothesis follows.
— Second Case: Suppose that

chain*(a,d, h,7)
E3b . C(a) * I(a,b) *chain*(b,d, h,— 1) A state(a, T)
E3b . chain®(a,a,0,0) * C(a) * I(a, b) * chain*(b,d, h,7— 1) A state(a, T),

where the second implication follows, since chain®(a,a,0,0) unfolds to emp.
Hence the induction hypothesis is correct for all 1 <h+teNpand < 1. O

In the following lemmata and proofs we use the proof rules that are also used for cyclic
proofs (see [BDP11]).

Lemma 17. It holds that
chain*(a, b, hy,ty) * chain*(b, c,hi,h)E Chain*(a, c,ho+hi,to+1)
forvariables a,b,c € V and natural numbers hy,hy,ty,t; € Ny.

Proof. We show the statement via natural induction over the sum hg + #y € Nj.

e Base Case: Suppose that 0 =: n € N, a,b,c € V are some variables and ho,#o,h,t] €
Ny are natural numbers such that s + ¢ty = n. Hence hg = o = 0 and

true
emp = chain®(a,c,hy,t1) E chain*(a,c, hy, 1))
chain*(a,b,0,0) = chain® (b, ¢, hy, ) | chain*(a,c,hy,t1).

(w)

o Induction Hypothesis: There exists an arbitrary but fixed n € Ny such that for all
ho, hi,t9,t1 € Ng with hg + tg = n it follows that
chain®(a, b, hy, tp) = chain™ (b, ¢, hy,11) | chain®(a, ¢, hg + hi, 19+ 11)
for variables a,b,c € V.

e Induction Step: Let hg,hi,t0,t; € Ny be natural numbers such that hy +19 = n + 1.
Furthermore a,b,c € V are variables. Then the statement follows via a prooftree,
where we use the induction hypothesis in step (IH):
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true
C(a) = I(a,a’) chain*(a’,c,ho + hy — 1,19 + 11) A state(a, H)
E C(a)*I(a,a’) = chain®*(a’,c,hg + hy — 1,1y + 11) A state(a, H)
C(a)*I(a,a’) = chain™(a’,c,ho + hy — 1,19 + 1) A state(a, H)
E3dd’ . C(a)«I(a,a’) *chain™(a’,c,ho + hy — 1,19 +11) A state(a, H)

@

C(a)*I(a,a’) =chain™(a’,c,ho + hy — 1,19 + 1) A state(a, H) (rw)
E chain*(a,c, ho+hy,tg+1) (IH)
C(a)*1(a,a’) = chain*(a’, b, hy — 1,1y) = chain® (b, ¢, h1, 1)) A state(a, H) analogous proof
kE chain®(a,c,hg + hy,to +11) for state(a,T)

1
chain’ (a,b. how1o) » chain’ (s 11) b chain (@ coho + oot + 1)
Note that if either kg or £y are equal to 0, then there exists only one possible unfolding
at step (lu). Hence only one of the branches applies and the proof is even simpler. We
will leave it out here, because it is redundant.

We have shown the statement via natural induction. O

Lemma 18. It holds that

chain*(a,c,h,t) E 3b . [chain®(a,b,h,t — 1) =« C(b) = I(b,c) A state(b, T)]
V[chain*(a,b,h— 1,t) * C(b) = I(b, c) A state(b,H)])

forvariables a,c € V and natural numbers h,t € Ny such that h+1t > 1.

Proof. Similar to the proof of Lemma 17 we show the statement via natural induction over
the sum 1 < h+1 e Ny.

e Base Case: Suppose that 1 =: n € Ny, a,c € V are variables and &,t € Ny are natural
numbers such that 4+t = n. Then either (h=1and r=0) or (h =0 and ¢ = 1). Since
the proof is analogous, we show only the first case:

true
C(a)*I(a,c) Astate(a,n) = emp * C(a) * I(a,c) A state(a, H)

C(a) = I(a,c) A state(a,n) = chain®(a,a,0,0) * C(a) * I(a,c) A state(a, H)
C(a)*I(a,c) Astate(a,n) E b . chain®(a,b,0,0) * C(b) * I(b,c) A state(a, H)
chain®(a,c,1,0) E 3b . chain®(a,b,0,0)* C(b) = I(b,c) A state(a,H)
chain®(a,c,1,0) E 3b . [chain*(a,b,0,—1) = C(b) =« I(b,c) A state(a,T)]
V[chain*(a,b,0,0) = C(b) * I(b,c) A state(a,H)].

(ru)
@
(lw)
(ru)

e Induction Hypothesis: There exists an arbitrary but fixed 1 < n € Ny such that for all
h,t € Ny with i+t = n it follows that
chain®(a,c,h,t) E 3b . [chain®(a,b,h,t— 1)« C(b) = I(b,c) A state(b, T)]
V[chain*(a,b,h—1,t) % C(b) * I(b,c) A state(b,n)])
for variables a,c € V.

e Induction Step: Let &, ¢ € Ny be natural numbers such that 4+t = n+ 1. Furthermore
a,c € V are variables. Then the statement follows via a prooftree, where we use the
induction hypothesis in step (IH):

79



true
C(a)*1(a,by) = F Astate(a,H) E C(a) = I(a,by) = F A state(a, H)
C(a)*I(a,by) = F Astate(a,H) E Aby,by . C(a)*1(a,by) * F A state(a,H)
C(a)*I(a,by)* F A state(a,H)
= 3b; . [chain*(a, by, h,t — 1) C(by) x I(ba, c) A state(by, T)]
V[chain*(a,by,h— 1,1) % C(b) = I(ba, ) A state(by, H)
C(a)*I(a,by) *chain*(by,c,h— 1,1) A state(a, H)
= 3b; . [chain*(a, by, h,t — 1) % C(by) x I(ba, c) A state(by, T)] analogous proof
V[chain*(a,by,h— 1,1) * C(by) = I(b2, ) A state(by, H) for state(a,T)
chain*(a,c,h,t) | Ab; . [chain®(a, by, h,t — 1) x C(by) * I(ba,c) A state(b,1)]
V([chain*(a,by,h—1,1) = C(by) = I(ba, ¢) A state(by, H),

(€))
(ru)

(IH)

(Iw)

and F := [chain(by,by,h— 1,1 — 1) = C(by) * I(by,c) A state(by,T)] V [chain(by,br, h —
2,1« C(by) x I(by,c) A state(by,H)].

‘We have shown the statement via natural induction. O

Lemma 19. The implication
token_ring(a) E Ax,z . C(x) * I(x,z) * chain®(z, x, h,1 — 1) A state(x,T)
holds for a variable a € V and natural numbers 1 < h,t € N.

Proof. We know that token_ring(a) unfolds to chain(a,a,h,t) for 1 < h,t € Ny. Hence it
follows via Lemma 16 that

token_ring(a) | dx,z . chain®(a, x, ho, to) * C(x) * I(x,z) * chain®(z,a, hy, 1) A state(x, T)

for natural numbers hg, A1, %o, 11 € Ng. Furthermore it follows via Lemma 17 that chain®(a, x, hg, fo) *
chain*(z,a, h1,t1) E chain®(z, x, hog + h1,fo + 1) and hence

token_ring(a) E Ax,z . C(x)* I(x,z) = chain®(z, x, ho + A1, o + 11) A state(x, T).

Furthermore we know from Lemma 16 that g+ = h and #p + ¢ + 1 =1, thus the implication
follows. O

Lemma 20. The implication

token_ring"(a) E 3Ax,y,z . C(x) «I(x,y) * C(y) x I(y,7) * ([chain*(z, x,h,t—1) Astate(x,T)]

V [chain®(z, x, i — 1,1) A state(x, )] ) A state(y, T)
holds for a variables a € V and natural numbers 1 < h,t € Ny.

Proof. We know that token_ring"(a) unfolds to 3b,h,t . C(a) = I(a,b) = chain(b,a, h,t) A
state(a,T) with 1 < h,t € Ny. It holds that chain(b,a, h,?) | chain®(b,a, h,t) and it follows
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via Lemma 18 that

token_ring"(a) E 3b,c,h,t . C(a)*I(a,b)
s+ ([chain®(b,c,h,t = 1) C(c) ¥ I(c,a) A state(c, )]
V [chain*(b,c,h,t— 1)« C(c) * I(c,a) A state(c,T)])

A state(a,T)
E3db,c,h,t.C(c)*I(c,a)*C(a)=I1(a,b)

# ([chain®(b,c, h,t - 1) A state(c, 1)]
V [chain®(b,c,h—1,1) A state(c,H)])
A state(a,T).

The second implication simply changes the order of the formula. If we match the variables
in the formula, then the assertion follows. O

B.2. Invariance Under Havoc

We define a new predicate that describes a closed chain:

chain®(x, x,1,0) « C(x) A state(x, H)
chain®(x, x,0,1) « C(x) A state(x, T)
chain®(x,y,h,1) « Az . C(x) = I(x,z) *chain®(z,y,h — 1,1) A state(x, H)
chain®(x,y,h,1) « Jz . C(x) = I(x,z) *chain®(z, y,h,t — 1) A state(x, T)

Theorem 9. The closed chain chain®(x,y,h,t) is invariant under havoc for x,y € V and
h,t € Ng and the following triple is correct:

{ chain®(x,y,h,?) } havoc { chain®(x,y,h,1) }.

Proof. The following proof is from a draft between Radu losif, Marius Bozga and me. We
prove the theorem via a very large prooftree and in order to minimize the trees, we write
C*(x) := C(x) A state(x, s) for s € {H,T}. We write £ = Xy(chain®(x,y,h,t)), where 6 is an
injective substitution mapping all existentially quantified variables from every unfolding of
chain®(x,y, h,f) to unique names. The first step applies the (lu) rule:
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{ CM(x) = I(x,2) * chain®(z,y,h—1,1) } £* { chain®(x,y,h,1) } (A)

{ CH(x) % I(x,7) % chainc(z,y,h,t.— 1)} =* { chain®(x,y,h,t) } (B)

h * h (6)
{C"x) 2" {C"(x)}
{C"(x)} * { chain®(x, x, 1,0) }

(ru)

oz (Cw ©

}
{C'(x)} * { chain®(x,x,0,1) }
{ chain®(x,y,h,t) } ¥* { chain®(x,y,h,1) }.
Note that Z(C"(x)) = Z(C'(x)) = 0 and {e€} is the only language on the @ alphabet, which
takes care of the last two subgoals. The (A) subgoal is proven below:

(ru)

(Iu)

© { chain®(z,y,h—1,1) }
{C"(x)}%Z\{I(x,z)} { CIT(X)*I(X,Z) } € { C"(x)*l(x,z) } (2\{[()6,2)})*

(Foa) hain®(z,y,h—1,
() e\ (W) {chain" ey h = 1.0)) (supp)
[Ch*lxa) ) { (100 Jwchainte,v. =10 }
C\{I(x,2h* (D) C\{I(x, 2"
{Ch(x)*I(X,Z)] {*chainc(z,y,h—l,t)}
()
{C(x) * I(x,2) * chain®(z,y, h — 1,1)} { €M)« 1(x,2) % chain®(z,y,h = 1,1) |
T C\{(x,2)D* ©)
{I(x,2)} { €M) I(x,2)  chain®(z,y,h—1,1) |
{ CM(x) * I(x,2) * chain®(z,y,h — 1,1) } T* { C"(x) * I(x,z) * chain®(z, y,h — 1,1) } © (7
C
{ CM(x) * I(x,2) * chain®(z,y,h— 1,£) } T {3z’ . C"(x) * I(x,7) * chain®(’,y,h— 1,1) } w
ru

{ CM(x) * I(x,2) * chain®(z,y,h — 1,1) } =* { chain®(x,y, k1) }

The rule (ru) replaces the predicate atom chain®(x,y, h,t) occurring on the right hand side

of the goal by one of its rules and a subsequent application of the consequence rule (c)
instantiates the existentially quantified variable 7’ with the z variable occurring on the left
hand side of the Hoare triple. Further, the language is restricted from £* to (X\ {I(x,2)})*
by an application of the (f..) rule. Note that [(Z\ {/(x,z)})*] is prefix-closed and that [(Z\
{I(x,2)})* > {I(x,2)}*] = [£*]. Next, the right hand side goal

{C(x) *1(x,2) * chain®(z,y. = 1,0} (E\{I(x, )" {C"(x)# I(x,2) *chain®(z,y,h — 1,1)}
is reduced by an application of rule (>) with:

P1
P

emp
1(x,2)

CM(x)*I(x,z7) F (P1,P2)
chain®(z,y,h—1,1) F (P2, P1)
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to the following subgoals:

{Ch0# 1(x. )} @\ {Ix. )" {Ch(x) *1(x,2)} and
{I(x,2)  chain®(z,y,h— 1,0} (E\{I(x,2))* {1(x,2) * chain(z,y,h - 1,1)}

The left subgoal is proven again using (f.<). The right subgoal is reduced to the inductive
hypothesis (*) {chain®(z,y,h—1,1)} (Z\1(x,z))* {chain®(z,y,h—1,1)} using the (supp) rule,
since 1(x,z) ¢ supp((Z\ I(x,2))").

We prove now the remaining subgoal (B). Note that [(Z\ {/(x,2)})* - I(x,2) - Z*JU [(Z\
{1(x,2)})*] = [£*] and apply rule (V) splitting (B) into two subgoals:

similar to (C)
{C!(x) = I(x,z) * chain®(z,y, h,t — 1)}

E\{I(x, )"
{C'(x) * I(x,2) * chain®(z,y, h,t — 1)}

{C"(x) = I(x,z) * chain®(z,y, h,t — 1)} (©
C\{I(x, 2"
{37 . C'(x) xI(x,7') *chain®(’, y, h,t — 1)}
{C"(x) * I(x,7) * chain®(z,y,h,t — 1)} ) {C"(x) = I(x,z) * chain®(z,y, h,t — 1)}
C\{I(x, 2" C\I(x2D" 1(x,2)- Z* (E)
{chain®(x,y, h,1)} {chain®(x,y,h,1)}

{C'(x) = I(x,z) * chain®(z,y,h,t — 1)} £* {chain®(x,y,h,1)} ©

The left subgoal is reduced to a Hoare triple similar to (C), by an application of the rule
(ru), followed by an instantiation of the existentially quantified variable z’ by rule (c). The

right subgoal (E) is proven below, by first unfolding the definition of chain®(z,y,h,t—1) on
the left hand side:

{C1(0) * I(x.2) + C'(2) # I (z,u) % chain®(u,y, h — 1,1 = 1)) (C!(x) * I(x,2) * C'(2) * I(z,u) * chain® (u, y, h, t — 2)}
G\, D" 1(x,2) - Z* CE\(x, D" - 1(x,2) - Z*
{chain®(x,y, , 1)} {chain®(x,y, h, 1)}
[C'0 I(x.2)+ C (2) (C'(x) % I(x,2) * C' ()}
C\(x, D" 1(x,2) - Z* CE\U(x2D" - 1(x,2)- Z*
{chain®(x,z,1,1)} {chain®(x,z,0,2)}

1
{C'(x) * I(x,z) *chain®(z,y, h,t — 1)} E\{I(x,2)})* - I(x,z)-T* {chain®(x,y,h,1)} (w

First we prove the two subgoals of (E) that involve no predicates:
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{CH(x) % I(x,2) * C'(2)} € {C'(x)*I(x,2) * C'(z)} (C'(x) *I(x,2)*C'(2)} TZ

[C'0) *1(x,2) * C' @)} = {C'() 1(x,2)  C' (@)} © =)
{C' ) *1(x,2) % C"(Q)} E\{I(x,2))" - 1(x,2)-Z" {C'(0)*1(x,2)xC' ()} (ru)
{CH(x) = I(x,2) * C'(2)} C\{I(x,2)})* - 1(x,2)-Z* {C"(x)* I(x,7") * chain®(z,z,0, 1)} ©

{C'(x) = I(x,2) *C'(2)} E\{I(x,2)))* - 1(x,2)-Z* {7 . C'(x)* I(x,7") *chain®(z’,z,0,1)}
{C'(x) = I(x,2) «C'(2)} E\{I(x,2)})* - I(x,z)-Z* {chain®(x,z,0,2)}

(ru)

We move on to the remaining subgoals (with predicates):

similar to (C)

similar to (D) { #CM(2) % 1(z ) * chain (u, y, h— 1,1 — 1)}

{C'(x)* I(x,2)} E\{(x,2)D)* {C'(x) *I(x,2)} C\{I(x, 2"
{*C”(Z) #1(z,u) % chain®(u, y, h— 1,1 — 1)}

(€100 # 1(x,2) + CM(2) # I(z,u) w chain®(u,y, h = 1.t = D} (E\ (2,2 {C"(x) 1 (x,2) % C"'(2) % 1z, ) = chain® (i, y, h = 1,1 1)}

()

(@)
{C'@ #1062+ Ch @) 1(x,2) {CMx) # 1(x,2)+ C' () ©
(supp) {I(z,u) *chain®(u,y,h— 1,t—1)}

{C'(x) #16,2)*+Ch(2)* } 1(x,2) {ch () 1(x,2)* C'(2) * } e

{I(z,u) * chain®(u,y,h— 1, — 1)}

{C100 1,2+ CP(2) # (2, u) % chain® (e, y, = 1,0 = D 1(x,2) {C(x) # 1(x,2)  C'(2) % 1z 1) % chain® (u, y, b= 1,1 = 1)} (G)
(A)
{Ch(x) « I(x,z) * chain®(z,y,h— 1, t)} ¥* {chain®(x,y,h,1)}
(If)
{€h0 # 1x,2)+ C'(2) * (z,u) % chain®(u,y, h = 1,6 = 1)} * {chain®(x,y,h,1)}
)

{C’(x)*](x,z)*Ch(z) *1(z,u) * chain®(u,y,h— 1,1 — 1)} C\I(x,2})* - I(x,2)-Z* {chain®(x,y,h,1)}
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similar to (C)
{C'(x) % I(x,z) * chain®(z,y, h,t — 1)} (Z\{I(x,2)})* {C'(x) *I(x,7) *chain®(z,y, h,t — 1)}
{C'(x) % I(x,2) * C'(2) * I(z,u) * chain®(u,y, h,t = 2)} (Z\ {I(x,2)})* {C'(x) = I(x,z) *chain®(z,y, h,t — 1)}

(f)

C'(x)* I(x,2) * C'(2) % I(z,u) * chain®(u, y, h,t — 2) )
{C"(x) * I(x,2) * C'(2) * I(z,u) * chain®(u,y, h,t — 2)} (\ {I(x,2)})* Y
C'(x)* I(x,2) * C"(2) * I(z,u) «chain®(u,y,h—1,t-1)
(G)
{C"(x)  1(x,2) * C'(2) * I(z,u) * chain® (u, y, h, t = 2)} 1 I(x,2) D) {C100 * 1(x,2) + CM(2) I (z,u) % chain®(u,y, h— 1,6 = 1))
{C'(x) = I(x,2) * C'(2) * I(z,u) * chain®(u,y, h,t = 2)} I(x,z) {L} + 1(x,2)
[C"(x)*l(x,z)*C’(z)*1(z,u)*chain°(u,y,h—l,t—l)}
C'(x) = I(x,z) * C'(z) * I(z,u) * chain®(u, y, h,t — 2) )
\% I(x,z) {Ch(x)*1(x,z)*C’(z)*I(z,u)*chainc(u,y,h— 1,1— 1)]
C'(x) % I(x,2) * C"(z) % I(z,u) * chain®(u,y, h — 1,1 — 1)
(A)
{C"(x)# I(x.2) + chain® (2. y,h = 1.0)} £* {chain®(x,y. . 1)}
(If)
{C"00) # 16,20+ C'(2) I (z,u) x chain®(u,y, h = 1,6 = 1)} £* {chain®(x,y,h,1)}
©)

{C!(x) * I(x,2) * C'(z) * I(z,u) * chain®(u,y, h,t — 2)} (E\{I(x,2)})* - I(x,z)-Z* {chain®(x,y,h,1)}

We have finally proven the invariance of chain®(x,y, ,) under havoc. O
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